機器人正逆運動學分析(ABB-IRB2600)

IRB2600的標準DH法

建立IRB2600的標準DH模型:

機器人結構示意圖

標準DH法中相鄰座標系之間的齊次變換矩陣:

機器人座標結構圖

IRB2600的標準DH參數表:

軸號 i i α i 1 \alpha_{i-1} a i 1 a_{i-1} d i d_{i} θ i \theta_{i}
1 0 0 d 1 ( 445 ) d_{1}(445) θ 1 \theta_{1}
2 9 0 -90^{\circ} a 1 ( 150 ) a_{1}(150) 0 θ 2 + 9 0 \theta_{2}+90^{\circ}
3 0 a 2 ( 700 ) a_{2}(-700) 0 θ 3 \theta_{3}
4 9 0 90^{\circ} a 3 ( 115 ) a_{3}(-115) d 4 ( 795 ) d_{4}(795) θ 4 \theta_{4}
5 9 0 -90^{\circ} 0 0 θ 5 \theta_{5}
6 9 0 90^{\circ} 0 d 6 ( 85 ) d_{6}(85) θ 6 \theta_{6}

6 0 T = [ n x o x a x p x n y o y a y p y n z o z a z p z 0 0 0 1 ] = 1 0 T 2 1 T 3 2 T 4 3 T 5 4 T 6 5 T (10) ^{0}_{6}T=\begin{bmatrix} n_x & o_x & a_x & p_x\\ n_y & o_y & a_y & p_y\\ n_z & o_z & a_z & p_z\\ 0 & 0 & 0 & 1 \end{bmatrix} ={{^{0}_{1}T}{^{1}_{2}T}{^2_{3}T}{^3_{4}T}{^4_{5}T}{^5_{6}T}} \tag{10}
其中:
1 0 T = [ c o s ( θ 1 ) s i n ( θ 1 ) 0 0 s i n ( θ 1 ) c o s ( θ 1 ) 0 0 0 0 1 d 1 0 0 0 1 ] (11) ^{0}_{1}T=\begin{bmatrix} cos(\theta_{1}) & -sin(\theta_{1}) & 0 & 0\\ sin(\theta_{1}) & cos(\theta_{1}) & 0 & 0\\ 0 & 0 & 1 & d_{1}\\ 0 & 0 & 0 & 1 \end{bmatrix} \tag{11}

KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ ^{1}_{2}T &=…

3 2 T = [ c o s ( θ 3 ) s i n ( θ 3 ) 0 a 2 s i n ( θ 3 ) c o s ( θ 3 ) 0 0 0 0 1 0 0 0 0 1 ] (13) ^{2}_{3}T=\begin{bmatrix} cos(\theta_{3}) & -sin(\theta_{3}) & 0 & a_{2}\\ sin(\theta_{3}) & cos(\theta_{3}) & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \tag{13}

KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ ^{3}_{4}T &=\b…

5 4 T = [ c o s ( θ 5 ) s i n ( θ 5 ) 0 0 0 0 1 0 s i n ( θ 5 ) c o s ( θ 5 ) 0 0 0 0 0 1 ] (15) ^{4}_{5}T=\begin{bmatrix} cos(\theta_{5}) & -sin(\theta_{5}) & 0 & 0\\ 0 & 0 & 1 & 0\\ -sin(\theta_{5}) & -cos(\theta_{5}) & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \tag{15}

6 5 T = [ c o s ( θ 6 ) s i n ( θ 6 ) 0 0 0 0 1 d 6 s i n ( θ 6 ) c o s ( θ 6 ) 0 0 0 0 0 1 ] (16) ^{5}_{6}T=\begin{bmatrix} cos(\theta_{6}) & -sin(\theta_{6}) & 0 & 0\\ 0 & 0 & -1 & -d_{6}\\ sin(\theta_{6}) & cos(\theta_{6}) & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \tag{16}

IRB2600的逆運動學解析解推算

推算 θ 1 \theta_{1} :

利用關係式: ( T 0 1 ) 1 T e n d = T 1 2 T 2 3 T 3 4 T 4 5 T 5 6 (T^1_0)^{-1}T_{end}=T^2_1T^3_2T^4_3T^5_4T^6_5 θ 1 \theta_1 進行推算,通過對比矩陣元素之間關係,可按照如下過程求解 θ 1 \theta_1
T l e f t ( 2 , 4 ) T l e f t ( 2 , 3 ) = T r i g h t ( 2 , 4 ) T r i g h t ( 2 , 3 ) (1) \displaystyle\frac{T_{left}(2,4)}{T_{left}(2,3)}=\frac{T_{right}(2,4)}{T_{right}(2,3)}\tag{1}
化簡得到:
θ 1 = a r c t a n a y d 6 p y a x d 6 p x (2) \displaystyle\theta_{1}=arctan\frac{a_yd_6-p_y}{a_xd_6-p_x}\tag2
對於 θ 1 \theta_1 的計算,將會產生兩個解。

推算 θ 2 \theta_2 θ 3 \theta_3 :

θ 2 \theta_2 θ 3 \theta_3 可以由一個等式關係確定: T e n d ( T 4 5 T 5 6 ) 1 = T 0 1 T 1 2 T 2 3 T 3 4 T_{end}(T^5_4T^6_5)^{-1}=T^1_0T^2_1T^3_2T^4_3 ,首先爲確定 θ 2 \theta_2 關於 θ 1 \theta_1 的關係式,通過矩陣中如下元素的等式關係:
T l e f t ( 2 , 4 ) = T r i g h t ( 2 , 4 ) (3) \displaystyle T_{left}(2,4)=T_{right}(2,4) \tag3
T l e f t ( 3 , 4 ) = T r i g h t ( 3 , 4 ) (4) \displaystyle T_{left}(3,4)=T_{right}(3,4) \tag4
化簡得:
a 3 s i n ( θ 2 + θ 3 ) d 4 c o s ( θ 2 + θ 3 ) = a 1 a 2 s i n θ 2 p y d 6 a y s i n θ 1 (5) \displaystyle a_3sin(\theta_2+\theta_3)-d_4cos(\theta_2+\theta_3)=a_1-a_2sin\theta_2-\frac{p_y-d_6a_y}{sin\theta_1} \tag5
d 4 s i n ( θ 2 + θ 3 ) + a 3 c o s ( θ 2 + θ 3 ) = d 1 a 2 c o s ( θ 2 ) ( p z d 6 a z ) (6) d_4sin(\theta_2+\theta_3)+a_3cos(\theta_2+\theta_3)=d_1-a_2cos(\theta_2)-(p_z-d_6a_z) \tag6
爲化簡需要,令 X = s i n ( θ 2 + θ 3 ) X=sin(\theta_2+\theta_3) Y = c o s ( θ 2 + θ 3 ) Y=cos(\theta_2+\theta_3) ,通過式(5)和(6)聯立起來可以消除 X X Y Y ,從而得到:
a 3 2 + d 4 2 = ( k 1 a 2 s i n θ 2 ) 2 + ( k 2 a 2 c o s θ 2 ) 2 (7) \displaystyle {a_3}^2+{d_4}^2=(k_1-a_2sin\theta_2)^2+(k_2-a_2cos\theta_2)^2 \tag7
其中:
k 1 = a 1 p y d 6 a y s i n θ 1 (8) \displaystyle k_1=a_1-\frac{p_y-d_6a_y}{sin\theta_1} \tag8
k 2 = d 1 ( p z d 6 a z ) (9) \displaystyle k_2=d_1-(p_z-d_6a_z) \tag9
觀察發現,式(7)中只有 θ 1 \theta_1 θ 2 \theta_2 未知量,由此可建立 θ 2 \theta_2 關於 θ 1 \theta_1 的關係表達式,即 θ 2 \theta_2 的解析解:
θ 2 = a r c s i n k 1 2 + k 2 2 + a 2 2 ( a 3 2 + d 4 2 ) 2 a 2 k 1 2 + k 2 2 ϕ (10) \displaystyle \theta_2=arcsin \frac{{k_1}^2+{k_2}^2+{a_2}^2-({a_3}^2+{d_4}^2)}{2a_2\sqrt{{k_1}^2+{k_2}^2}}-\phi \tag{10}
s i n ϕ = k 2 k 1 2 + k 2 2 c o s ϕ = k 1 k 1 2 + k 2 2 (11) \displaystyle sin\phi = \frac{k_2}{\sqrt{{k_1}^2+{k_2}^2}} ,cos\phi = \frac{k_1}{\sqrt{{k_1}^2+{k_2}^2}} \tag{11}
對於 θ 2 \theta_2 的計算,亦會產生兩個解。

以上求出了 θ 1 \theta_1 θ 2 \theta_2 ,將式(5)(6)中 X X Y Y 作爲未知數,求出:
X = s i n ( θ 2 + θ 3 ) = a 3 A + d 4 B a 3 2 + d 4 2 (12) \displaystyle X=sin(\theta_2+\theta_3)=\frac {a_3A+d_4B}{{a_3}^2+{d_4}^2} \tag{12}
Y = c o s ( θ 2 + θ 3 ) = a 3 B d 4 A a 3 2 + d 4 2 (13) \displaystyle Y=cos(\theta_2+\theta_3)=\frac {a_3B-d_4A}{{a_3}^2+{d_4}^2} \tag{13}
其中:
A = k 1 a 2 s i n θ 2 B = k 2 a 2 c o s θ 2 (14) \displaystyle A = k_1-a_2sin\theta_2 ,B=k_2-a_2cos\theta_2 \tag{14}
結合式(12)(13)(14)和已算出的 θ 1 θ 2 \theta_1 \theta_2 可以計算出關節角 θ 3 \theta_3 +d42a3Bd4A(13)
其中:
A = k 1 a 2 s i n θ 2 B = k 2 a 2 c o s θ 2 (14) \displaystyle A = k_1-a_2sin\theta_2 ,B=k_2-a_2cos\theta_2 \tag{14}
結合式(12)(13)(14)和已算出的 θ 1 θ 2 \theta_1 \theta_2 可以計算出關節角 θ 3 \theta_3

推算 θ 5 \theta_{5}

相關文章
相關標籤/搜索