SLAM

|__all together shipnode

|__SLAM__算法

                 |__Graph SLAM__編程

                                             |__完成約束數據結構

                                             |__完成Graph SLAM__app

                                             |                                   |__完成約束(格子)dom

                                             |                                   |__加入地標         ide

                                             |                                                    函數

                                             |__ Ω和§優化

                                             |            |__編程(Init_pos,move1,move2)this

                                             |                                                             |__加入檢測(加入每次測量Z0,Z1,Z2)

                                             |__引入噪音

                                             |__完整的SLAM編程

PID:P的主要功能是讓偏差最小,由於轉向角正比於偏差。D使用得當能避免超調。系統漂移與偏置最好用I解決。

 

是時候了,put all together to make a system,這個系統採用車輛模型,而且使用了以前的robot類,獲得連續空間裏的最短路徑

 

steering_noise = 0.1
distance_noise = 0.03
measurement_noise = 0.3

class robot:
     def __init__(self,length = 0.5):
          self.x = 0.0
          self.y = 0.0
          self.orientation = 0.0
          self.length = length
          self.steering_noise = 0.0
          self.distance_noise = 0.0
          self.measurement_noise = 0.0
          self.num_collisions = 0
          self.num_steps = 0

     def set(self,new_x,new_y,new_orientation):
           self_x = float(new_x)
           self_y = float(new_y)
           self_orientation = float(new_orientation) % (2.0*pi)

     def set_noise(self,new_s_noise,new_d_noise,new_m_noise):
           self.steering_noise = float(new_s_noise)
           self.distance_noise = float(new_d_noise)
           self.measurement_noise = float(new_m_noise)

     def check_collisions(self,grid):    #檢查是否與網格碰撞
           for i in range(len(grid)):
                for j in range(len(grid[0])):
                     if grid[i][j] == 1:
                         dist = sqrt((self.x - float(i))**2 +
                                        (self.y - float(j) )**2)
                         if dist < 0.5:
                             num_collisions+=1
                         return False              
           return True

     def check_goal(self,goal,threshold = 1.0):    #檢查是否到達目標(threshold閥值)
           dist = sqrt((float(i) - self.x)**2 +
                           (float(j) - self.y)**2 )
           return goal < threshold

     def move(self,grid,steering,distance
                    tolerance = 0.001,max_steering_angle = pi/4.0):
           if steering > max_steering_angle:
               steering = max_steering_angle
           if steering < -max_steering_angle:
                steering = -max_steering_angle         
           if distance < 0.0:
              distance = 0.0
     
           # make a new copy
           res = robot()
           res.length = self.length
           res.steering_noise = self.steering_noise
           res.distance_noise = self.distance_noise
           res.measurement_noise = self.measurement_noise
           res.num_collisions = self.num_collisions
           res.num.step = self.num_step + 1
     
           #應用 noise
           steering2 = random.guass(steering,self.steering_noise)
           distance2 = random.guass(distance,self.distance_noise)

           #執行motion
           turn = tan(steering2)*distance2 / res.length
           if abs(turn) < tolerance:
              res.x = self.x + (distance2*cos(self.orientation))
              res.y = self.y + (distance2*sin(self.orientation))
              res.orientation = (self.orientation + turn) % (2.0*pi)
           else:   
              radius = distance2 / turn
              cx = self.x-(sin(self.orientation) * radius)
              cy = self.x+(cos(self.orientation) * radius)
              res.orientation = (self.orientation + turn) % (2*pi)
              res.x = cx +(sin(res.orientation) * radius)
              res.y = cy - (cos(res.orientation) * radius)
          return res

     def sense(self):
           return [random.guass(self.x,self.measurement_noise),
                      random.guass(self.y,self.measurement_noise)]  

     def measurement_prob(self, measurement):
           error_x = measurement[0] - self.x
           error_y = measurement[1] - self.y 
           error = exp(- (error_x ** 2) / (self.measurement_noise ** 2) / 2.0) / sqrt(2.0 * pi * (sigma ** 2))       
           error*= exp(- (error_y ** 2) / (self.measurement_noise ** 2) / 2.0) / sqrt(2.0 * pi * (sigma ** 2)) 
     return error

     def __repr__(self):
         return '[x=%.5s y=%.5s orient=%.5s]' % (self.x,self.y,self.orientation)
 

#輸入數據和參數
grid = [[0, 1, 0, 0, 0, 0],
           [0, 1, 0, 1, 1, 0],
           [0, 1, 0, 1, 0, 0],
           [0, 0, 0, 1, 0, 1],
           [0, 1, 0, 1, 0, 0]]
init = [0,0]
goal = [len(gird) - 1,len(grid[0])-1]

myrobot = robot()
myrobot.set_noise(steering_noise,distance_noise,measurement_noise)

while not myrobot.check_goal(goal):
    theta = atan2(goal[1] - myrobot.y,goal[0] - myrobot.x) -myrobot.orientation
    myrobot = myrobot.move(grib,theta,0.1)
if not myrobot.check_collision(grib):
    print ####Collision####
          

 

main()會調用A*、路徑平滑算法和在run裏面的控制器,控制器裏有粒子濾波算法。這裏會有一個循環來計算軌跡偏差CTE,只用了PD

 

theta和P(x,y)是粒子濾波器輸出的定位,cte是偏差,U是行駛的路程可由點積求出,而後求的小u是用分母歸一化後的結果,只要大於1就說明超過了線段,到了下一個線段(每一小步的線段)。CTE一樣方式得出。而後程序化這些數學公式,這裏設置了一個index變量,當U超過1時,index就要加1,以防超過線段,下面的程序輸出一段有效的,不會碰撞的路徑,返回值有是否成功、碰撞次數、步數。有時候也會極少發生碰撞,由於障礙物較多,系統噪音的影響。

from math import *
import random

steering_noise    = 0.1
distance_noise    = 0.03
measurement_noise = 0.3

#------------------------------------------------
#
# this is the plan class 
class plan:
    # init:creates an empty plan
    def __init__(self, grid, init, goal, cost = 1):
        self.cost = cost
        self.grid = grid
        self.init = init
        self.goal = goal
        self.make_heuristic(grid, goal, self.cost)
        self.path = []
        self.spath = []

    #-------------------------------------------------------
    # make heuristic function for a grid
    def make_heuristic(self, grid, goal, cost):
        self.heuristic = [[0 for row in range(len(grid[0]))] 
                          for col in range(len(grid))]
        for i in range(len(self.grid)):    
            for j in range(len(self.grid[0])):
                self.heuristic[i][j] = abs(i - self.goal[0]) + \
                    abs(j - self.goal[1])

    #--------------------------------------------------------
    # A* for searching a path to the goal
    def astar(self):
        if self.heuristic == []:
            raise ValueError, "Heuristic must be defined to run A*"

        # internal motion parameters
        delta = [[-1,  0], # go up
                 [ 0,  -1], # go left
                 [ 1,  0], # go down
                 [ 0,  1]] # do right


        # open list elements are of the type: [f, g, h, x, y]
        closed = [[0 for row in range(len(self.grid[0]))] 
                  for col in range(len(self.grid))]
        action = [[0 for row in range(len(self.grid[0]))] 
                  for col in range(len(self.grid))]

        closed[self.init[0]][self.init[1]] = 1


        x = self.init[0]
        y = self.init[1]
        h = self.heuristic[x][y]
        g = 0
        f = g + h

        open = [[f, g, h, x, y]]

        found  = False # flag that is set when search complete
        resign = False # flag set if we can't find expand
        count  = 0

        while not found and not resign:
            # check if we still have elements on the open list
            if len(open) == 0:
                resign = True
                print '###### Search terminated without success'
            else:
                # remove node from list
                open.sort()
                open.reverse()
                next = open.pop()
                x = next[3]
                y = next[4]
                g = next[1]

            # check if we are done
            if x == goal[0] and y == goal[1]:
                found = True
                # print '###### A* search successful'
            else:
                # expand winning element and add to new open list
                for i in range(len(delta)):
                    x2 = x + delta[i][0]
                    y2 = y + delta[i][1]
                    if x2 >= 0 and x2 < len(self.grid) and y2 >= 0 \
                            and y2 < len(self.grid[0]):
                        if closed[x2][y2] == 0 and self.grid[x2][y2] == 0:
                            g2 = g + self.cost
                            h2 = self.heuristic[x2][y2]
                            f2 = g2 + h2
                            open.append([f2, g2, h2, x2, y2])
                            closed[x2][y2] = 1
                            action[x2][y2] = i

            count += 1

        # extract the path
        invpath = []
        x = self.goal[0]
        y = self.goal[1]
        invpath.append([x, y])
        while x != self.init[0] or y != self.init[1]:
            x2 = x - delta[action[x][y]][0]
            y2 = y - delta[action[x][y]][1]
            x = x2
            y = y2
            invpath.append([x, y])

        self.path = []
        for i in range(len(invpath)):
            self.path.append(invpath[len(invpath) - 1 - i])


    # -----------------------------------------------------
    # this is the smoothing function
    def smooth(self, weight_data = 0.1, weight_smooth = 0.1, 
               tolerance = 0.000001):

        if self.path == []:
            raise ValueError, "Run A* first before smoothing path"

        self.spath = [[0 for row in range(len(self.path[0]))] \
                           for col in range(len(self.path))]
        for i in range(len(self.path)):
            for j in range(len(self.path[0])):
                self.spath[i][j] = self.path[i][j]

        change = tolerance
        while change >= tolerance:
            change = 0.0
            for i in range(1, len(self.path)-1):
                for j in range(len(self.path[0])):
                    aux = self.spath[i][j]
                    
                    self.spath[i][j] += weight_data * \
                        (self.path[i][j] - self.spath[i][j])
                    
                    self.spath[i][j] += weight_smooth * \
                        (self.spath[i-1][j] + self.spath[i+1][j] 
                         - (2.0 * self.spath[i][j]))
                    if i >= 2:
                        self.spath[i][j] += 0.5 * weight_smooth * \
                            (2.0 * self.spath[i-1][j] - self.spath[i-2][j] 
                             - self.spath[i][j])
                    if i <= len(self.path) - 3:
                        self.spath[i][j] += 0.5 * weight_smooth * \
                            (2.0 * self.spath[i+1][j] - self.spath[i+2][j] 
                             - self.spath[i][j])
                
            change += abs(aux - self.spath[i][j])
            
                
# ------------------------------------------------
# 
# this is the robot class
class robot:
    # init: creates robot and initializes location/orientation to 0, 0, 0
    def __init__(self, length = 0.5):
        self.x = 0.0
        self.y = 0.0
        self.orientation = 0.0
        self.length = length
        self.steering_noise    = 0.0
        self.distance_noise    = 0.0
        self.measurement_noise = 0.0
        self.num_collisions    = 0
        self.num_steps         = 0
        
    # set: sets a robot coordinate
    def set(self, new_x, new_y, new_orientation):

        self.x = float(new_x)
        self.y = float(new_y)
        self.orientation = float(new_orientation) % (2.0 * pi)

    # set_noise: sets the noise parameters
    def set_noise(self, new_s_noise, new_d_noise, new_m_noise):
        # makes it possible to change the noise parameters
        # this is often useful in particle filters
        self.steering_noise     = float(new_s_noise)
        self.distance_noise    = float(new_d_noise)
        self.measurement_noise = float(new_m_noise)

   
    # check: checks of the robot pose collides with an obstacle, or is too far outside the plane
    def check_collision(self, grid):
        for i in range(len(grid)):
            for j in range(len(grid[0])):
                if grid[i][j] == 1:
                    dist = sqrt((self.x - float(i)) ** 2 + 
                                (self.y - float(j)) ** 2)
                    if dist < 0.5:
                        self.num_collisions += 1
                        return False
        return True
        
    def check_goal(self, goal, threshold = 1.0):
        dist =  sqrt((float(goal[0]) - self.x) ** 2 + (float(goal[1]) - self.y) ** 2)
        return dist < threshold
        
    # move: steering = front wheel steering angle, limited by max_steering_angle
    #       distance = total distance driven, most be non-negative
    def move(self, grid, steering, distance, 
             tolerance = 0.001, max_steering_angle = pi / 4.0):
        if steering > max_steering_angle:
            steering = max_steering_angle
        if steering < -max_steering_angle:
            steering = -max_steering_angle
        if distance < 0.0:
            distance = 0.0
            
        # make a new copy
        res = robot()
        res.length            = self.length
        res.steering_noise    = self.steering_noise
        res.distance_noise    = self.distance_noise
        res.measurement_noise = self.measurement_noise
        res.num_collisions    = self.num_collisions
        res.num_steps         = self.num_steps + 1

        # apply noise
        steering2 = random.gauss(steering, self.steering_noise)
        distance2 = random.gauss(distance, self.distance_noise)

        # Execute motion
        turn = tan(steering2) * distance2 / res.length

        if abs(turn) < tolerance:
            # approximate by straight line motion
            res.x = self.x + (distance2 * cos(self.orientation))
            res.y = self.y + (distance2 * sin(self.orientation))
            res.orientation = (self.orientation + turn) % (2.0 * pi)
        else:
            # approximate bicycle model for motion
            radius = distance2 / turn
            cx = self.x - (sin(self.orientation) * radius)
            cy = self.y + (cos(self.orientation) * radius)
            res.orientation = (self.orientation + turn) % (2.0 * pi)
            res.x = cx + (sin(res.orientation) * radius)
            res.y = cy - (cos(res.orientation) * radius)

        # check for collision
        # res.check_collision(grid)
        return res

  
    # sense: 
    def sense(self):
        return [random.gauss(self.x, self.measurement_noise),
                random.gauss(self.y, self.measurement_noise)]

  
    # measurement_prob: computes the probability of a measurement
    def measurement_prob(self, measurement):
        # compute errors
        error_x = measurement[0] - self.x
        error_y = measurement[1] - self.y

        # calculate Gaussian
        error = exp(- (error_x ** 2) / (self.measurement_noise ** 2) / 2.0) \
            / sqrt(2.0 * pi * (self.measurement_noise ** 2))
        error *= exp(- (error_y ** 2) / (self.measurement_noise ** 2) / 2.0) \
            / sqrt(2.0 * pi * (self.measurement_noise ** 2))
        
        return error

    def __repr__(self):
        # return '[x=%.5f y=%.5f orient=%.5f]'  % (self.x, self.y, self.orientation)
        return '[%.5f, %.5f]'  % (self.x, self.y)

# ----------------------------------------------------------------
# 
# this is the particle filter class
class particles:
    # init: creates particle set with given initial position
    def __init__(self, x, y, theta, 
                 steering_noise, distance_noise, measurement_noise, N = 100):
        self.N = N
        self.steering_noise    = steering_noise
        self.distance_noise    = distance_noise
        self.measurement_noise = measurement_noise
        
        self.data = []
        for i in range(self.N):
            r = robot()
            r.set(x, y, theta)
            r.set_noise(steering_noise, distance_noise, measurement_noise)
            self.data.append(r)
            
    # extract position from a particle set
    def get_position(self):
        x = 0.0
        y = 0.0
        orientation = 0.0

        for i in range(self.N):
            x += self.data[i].x
            y += self.data[i].y
            # orientation is tricky because it is cyclic. By normalizing
            # around the first particle we are somewhat more robust to
            # the 0=2pi problem
            orientation += (((self.data[i].orientation
                              - self.data[0].orientation + pi) % (2.0 * pi)) 
                            + self.data[0].orientation - pi)
        return [x / self.N, y / self.N, orientation / self.N]

    # motion of the particles
    def move(self, grid, steer, speed):
        newdata = []

        for i in range(self.N):
            r = self.data[i].move(grid, steer, speed)
            newdata.append(r)
        self.data = newdata

    # sensing and resampling
    def sense(self, Z):
        w = []
        for i in range(self.N):
            w.append(self.data[i].measurement_prob(Z))

        # resampling (注意這是淺拷貝)
        p3 = []
        index = int(random.random() * self.N)
        beta = 0.0
        mw = max(w)

        for i in range(self.N):
            beta += random.random() * 2.0 * mw
            while beta > w[index]:
                beta -= w[index]
                index = (index + 1) % self.N
            p3.append(self.data[index])
        self.data = p3

    
# --------------------------------------------------
# run:  runs control program for the robot
def run(grid, goal, spath, params, printflag = False, speed = 0.1, timeout = 1000):

    myrobot = robot()
    myrobot.set(0., 0., 0.)
    myrobot.set_noise(steering_noise, distance_noise, measurement_noise)
    filter = particles(myrobot.x, myrobot.y, myrobot.orientation,
                       steering_noise, distance_noise, measurement_noise)

    cte  = 0.0
    err  = 0.0
    N    = 0

    index = 0 # index into the path
    
    while not myrobot.check_goal(goal) and N < timeout:

        diff_cte = - cte

        # compute the CTE

        # start with the present robot estimate
        estimate = filter.get_position()
        
#-------------------------------------------------- # some basic vector calculations
dx = spath[index+1][0] ­ spath[index][0]
dy = spath[index+1][1] ­ spath[index][1]
drx = estimate[0] ­ spath[index][0]
dry = estimate[1] ­ spath[index][1]
# u is the robot estimate projected into the path segment
u = (drx * dx + dry * dy)/(dx * dx + dy * dy)
#the cte is the estimate projected onto the normal of the path segment
cte = (dry * dx ­ drx * dy)/(dx * dx + dy * dy)
if u > 1:
index += 1
# ---------------------------------------- diff_cte += cte steer = - params[0] * cte - params[1] * diff_cte myrobot = myrobot.move(grid, steer, speed) filter.move(grid, steer, speed) Z = myrobot.sense() filter.sense(Z) if not myrobot.check_collision(grid): print '##### Collision ####' err += (cte ** 2) N += 1 if printflag: print myrobot, cte, index, u return [myrobot.check_goal(goal), myrobot.num_collisions, myrobot.num_steps] # ------------------------------------------------------------------- # # this is our main routine def main(grid, init, goal, steering_noise, distance_noise, measurement_noise, weight_data, weight_smooth, p_gain, d_gain): path = plan(grid, init, goal) path.astar() path.smooth(weight_data, weight_smooth) return run(grid, goal, path.spath, [p_gain, d_gain]) # ------------------------------------------------ # # input data and parameters grid = [[0, 1, 0, 0, 0, 0], [0, 1, 0, 1, 1, 0], [0, 1, 0, 1, 0, 0], [0, 0, 0, 1, 0, 1], [0, 1, 0, 1, 0, 0]] init = [0, 0] goal = [len(grid)-1, len(grid[0])-1] #如下這些參數能夠調着玩,特別是p、d的權重,用優化函數可能得不到返回,本身嘗試出好的值 steering_noise = 0.1 distance_noise = 0.03 measurement_noise = 0.3 weight_data = 0.1 weight_smooth = 0.2 p_gain = 2.0 d_gain = 6.0 print main(grid, init, goal, steering_noise, distance_noise, measurement_noise, weight_data, weight_smooth, p_gain, d_gain) #---------------------------------------- # 參數優化 def twiddle(init_params): n_params = len(init_params) dparams = [1.0 for row in range(n_params)] params = [0.0 for row in range(n_params)] K = 10 for i in range(n_params): params[i] = init_params[i] best_error = 0.0; for k in range(K): ret = main(grid, init, goal, steering_noise, distance_noise, measurement_noise, params[0], params[1], params[2], params[3]) if ret[0]: best_error += ret[1] * 100 + ret[2] else: best_error += 99999 best_error = float(best_error) / float(k+1) print best_error n = 0 while sum(dparams) > 0.0000001: for i in range(len(params)): params[i] += dparams[i] err = 0 for k in range(K): ret = main(grid, init, goal, steering_noise, distance_noise, measurement_noise, params[0], params[1], params[2], params[3], best_error) if ret[0]: err += ret[1] * 100 + ret[2] else: err += 99999 print float(err) / float(k+1) if err < best_error: best_error = float(err) / float(k+1) dparams[i] *= 1.1 else: params[i] -= 2.0 * dparams[i] err = 0 for k in range(K): ret = main(grid, init, goal, steering_noise, distance_noise, measurement_noise, params[0], params[1], params[2], params[3], best_error) if ret[0]: err += ret[1] * 100 + ret[2] else: err += 99999 print float(err) / float(k+1) if err < best_error: best_error = float(err) / float(k+1) dparams[i] *= 1.1 else: params[i] += dparams[i] dparams[i] *= 0.5 n += 1 print 'Twiddle #', n, params, ' -> ', best_error print ' ' return params #twiddle([weight_data, weight_smooth, p_gain, d_gain])

 

SLAM是一種建圖方法,是同時定位和建圖的總稱。

當移動機器人在環境中建圖時,由於移動的不肯定性迫使咱們去定位。好比一個機器人從X0(0,0)沿x軸運動10個單位到X1,不能以X1=X0+10去表示移動後機器人的位置,而是用關於兩個參數的高斯分佈來表示,y方向一樣。這兩個高斯函數就成了約束條件,Graph SLAM就是利用一系列這樣的約束來定義機率。(這是相對約束)

一個機器人的移動過程,每一個點X1~X4都是(x,y,orientation)的三維向量,每一個點時刻都會測量一次與地標的距離(測量結果z用高斯表示),這樣會有三個約束出現:初始位置約束、相對約束(兩點之間的相對位置)、相對地標位置約束。

 

完成Graph SLAM

爲了完成Graph SLAM,一個矩陣和一個向量被引入,要把全部的姿式座標和地標都填到這個二維矩陣裏,

 

x0—>x1  5,那麼x0+5=x1,x0+(-1*x1)=-5,就是第一行。而後反過來x1+(-1*x0)=5,就是第二行。

觸類旁通,倒回,x2—>x1 -4 ,x1-4=x2,x2+(-x1)=-4,這就是第三行。而後x1+(-x2)=4,加到第二行,最後結果如圖,以此類推填充矩陣。

同理填入地標格子,沒測地標的檢測點空(x與L對應的空格),臨近的兩個檢測點才測互相的空格。

 Ω和§

 而後將這兩個矩陣通過簡單的數學運算就能找到全部世界座標的最佳解,即最好估計值μ。

這就是SLAM Graph方法,只要每次看到約束的時候就把這些數字填到這兩個矩陣當中,而後只需一個簡單的運算,機器人的位置最佳座標就出來了。

  1 # -----------
  2 # 寫一個函數doit, 輸入初始機器人的位置、move一、move2 
  3 # 這個函數能計算出Omega矩陣和Xi向量,而且返回mu向量
  4  
  5 from math import *
  6 import random
  7 
  8 
  9 # ------------------------------------------------
 10 # 
 11 # 這是一個矩陣的類,它能讓收集約束和計算結果更容易,
 12 # 儘管效率低下
 13 
 14 class matrix:
 15     # 包含矩陣基本運算的類
 16 
 17     # ------------
 18     # 初始化
 19 
 20     def __init__(self, value = [[]]):
 21         self.value = value
 22         self.dimx  = len(value)
 23         self.dimy  = len(value[0])
 24         if value == [[]]:
 25             self.dimx = 0
 26 
 27     # ------------
 28     # 設置矩陣(向量?)尺寸並使每一個元素爲0
 29 
 30     def zero(self, dimx, dimy = 0):
 31         if dimy == 0:
 32             dimy = dimx
 33         # check if valid dimensions
 34         if dimx < 1 or dimy < 1:
 35             raise ValueError, "Invalid size of matrix"
 36         else:
 37             self.dimx  = dimx
 38             self.dimy  = dimy
 39             self.value = [[0.0 for row in range(dimy)] for col in range(dimx)]
 40 
 41     # ------------
 42     # 設置等長寬的矩陣並全設1
 43 
 44     def identity(self, dim):
 45         # check if valid dimension
 46         if dim < 1:
 47             raise ValueError, "Invalid size of matrix"
 48         else:
 49             self.dimx  = dim
 50             self.dimy  = dim
 51             self.value = [[0.0 for row in range(dim)] for col in range(dim)]
 52             for i in range(dim):
 53                 self.value[i][i] = 1.0
 54  
 55     # ------------
 56     # 輸出矩陣值
 57 
 58     def show(self, txt = ''):
 59         for i in range(len(self.value)):
 60             print txt + '['+ ', '.join('%.3f'%x for x in self.value[i]) + ']' 
 61         print ' '
 62 
 63     # ------------
 64     # 同規模的兩矩陣相加
 65 
 66     def __add__(self, other):
 67         # check if correct dimensions
 68         if self.dimx != other.dimx or self.dimx != other.dimx:
 69             raise ValueError, "Matrices must be of equal dimension to add"
 70         else:
 71             # add if correct dimensions
 72             res = matrix()
 73             res.zero(self.dimx, self.dimy)
 74             for i in range(self.dimx):
 75                 for j in range(self.dimy):
 76                     res.value[i][j] = self.value[i][j] + other.value[i][j]
 77             return res
 78 
 79     # ------------
 80     # 同規模矩陣相減
 81 
 82     def __sub__(self, other):
 83         # check if correct dimensions
 84         if self.dimx != other.dimx or self.dimx != other.dimx:
 85             raise ValueError, "Matrices must be of equal dimension to subtract"
 86         else:
 87             # subtract if correct dimensions
 88             res = matrix()
 89             res.zero(self.dimx, self.dimy)
 90             for i in range(self.dimx):
 91                 for j in range(self.dimy):
 92                     res.value[i][j] = self.value[i][j] - other.value[i][j]
 93             return res
 94 
 95     # ------------
 96     # 等規模矩陣相乘
 97 
 98     def __mul__(self, other):
 99         # check if correct dimensions
100         if self.dimy != other.dimx:
101             raise ValueError, "Matrices must be m*n and n*p to multiply"
102         else:
103             # multiply if correct dimensions
104             res = matrix()
105             res.zero(self.dimx, other.dimy)
106             for i in range(self.dimx):
107                 for j in range(other.dimy):
108                     for k in range(self.dimy):
109                         res.value[i][j] += self.value[i][k] * other.value[k][j]
110         return res
111 
112     # ------------
113     # 矩陣轉置
114 
115     def transpose(self):
116         # compute transpose
117         res = matrix()
118         res.zero(self.dimy, self.dimx)
119         for i in range(self.dimx):
120             for j in range(self.dimy):
121                 res.value[j][i] = self.value[i][j]
122         return res
123 
124 
125     # ------------
126     # 從現有的矩陣元素中提取一個新的矩陣
127     # 例如 ([0, 2], [0, 2, 3])即提取第0行和第3行的第0、二、3個元素
128 
129     def take(self, list1, list2 = []):
130         if list2 == []:
131             list2 = list1
132         if len(list1) > self.dimx or len(list2) > self.dimy:
133             raise ValueError, "list invalid in take()"
134 
135         res = matrix()
136         res.zero(len(list1), len(list2))
137         for i in range(len(list1)):
138             for j in range(len(list2)):
139                 res.value[i][j] = self.value[list1[i]][list2[j]]
140         return res
141 
142     # ------------
143     # 從現有的矩陣元素中提取擴張一個新的矩陣
144     # 例如 (3, 5, [0, 2], [0, 2, 3]),結果是3行5列,結果中第1/3行
145     # 的一、三、4列是初始矩陣按順序分佈,其他0補充
146     def expand(self, dimx, dimy, list1, list2 = []):
147         if list2 == []:
148             list2 = list1
149         if len(list1) > self.dimx or len(list2) > self.dimy:
150             raise ValueError, "list invalid in expand()"
151 
152         res = matrix()
153         res.zero(dimx, dimy)
154         for i in range(len(list1)):
155             for j in range(len(list2)):
156                 res.value[list1[i]][list2[j]] = self.value[i][j]
157         return res
158    
159     # ------------
160     # 計算正定矩陣的上三角Cholesky分解
161     def Cholesky(self, ztol= 1.0e-5):
162         res = matrix()
163         res.zero(self.dimx, self.dimx)
164 
165         for i in range(self.dimx):
166             S = sum([(res.value[k][i])**2 for k in range(i)])
167             d = self.value[i][i] - S
168             if abs(d) < ztol:
169                 res.value[i][i] = 0.0
170             else: 
171                 if d < 0.0:
172                     raise ValueError, "Matrix not positive-definite"
173                 res.value[i][i] = sqrt(d)
174             for j in range(i+1, self.dimx):
175                 S = sum([res.value[k][i] * res.value[k][j] for k in range(i)])
176                 if abs(S) < ztol:
177                     S = 0.0
178                 res.value[i][j] = (self.value[i][j] - S)/res.value[i][i]
179         return res 
180 
181     # ------------
182     # 計算矩陣的Cholesky上三角分解矩陣的逆矩陣
183 
184     def CholeskyInverse(self):
185         res = matrix()
186         res.zero(self.dimx, self.dimx)
187 
188     # Backward step for inverse.
189         for j in reversed(range(self.dimx)):
190             tjj = self.value[j][j]
191             S = sum([self.value[j][k]*res.value[j][k] for k in range(j+1, self.dimx)])
192             res.value[j][j] = 1.0/ tjj**2 - S/ tjj
193             for i in reversed(range(j)):
194                 res.value[j][i] = res.value[i][j] = \
195                     -sum([self.value[i][k]*res.value[k][j] for k in \
196                               range(i+1,self.dimx)])/self.value[i][i]
197         return res
198 
199     # ------------
200     # 計算返回矩形矩陣的逆置
201 
202     def inverse(self):
203        aux = self.Cholesky()
204        res = aux.CholeskyInverse()
205        return res
206 
207     #--------------
208     #打印矩陣
209 
210     def __repr__(self):
211        return repr(self.value) 
212 
213 
214 # ################################
215 """下面這個粒子調用(-3,5,3),-3初始位置,5 move1,3 move2
216 應返回向量結果[[-3.0],
217              [2.0],
218              [5.0]]
219 """
220 def doit(initial_pos, move1, move2):
221     Omega = [[1,0,0],[0,0,0],[0,0,0]]      #x0=-3 222     Xi = [[initial_pos],[0],[0]]
223 
224     Omega += [[1,­-1,0],[-­1,1,0],[0,0,0]]   #x0+5=x1 225     Xi += [[­-move1],[move1],[0]]
226 
227     Omega += [[0,0,0],[0,1,­-1],[0,­-1,1]]   #x1+3=x2 228     Xi += [[0],[­-move2],[move2]]
229     
230 Omega.show('Omegs: ')
231 Xi.show('Xi: ') 232 mu = Omega.inverse()*Xi 233 mu.show('mu: ')
234 235 return mu 236 237 doit(-3, 5, 3)

 

加入一個地標,從3*3變成4*4,代碼添加

Omega = Omega.expand(4, 4, [0,1,2], [0,1,2])
Xi = Xi.expand(4, 1, [0, 1, 2], [0])

Omega += matrix([[1., 0., 0., ­-1.],[0., 0., 0., 0.],[0., 0., 0.,0.],[­ -1., 0., 0., 1.]])
Xi += matrix([[-­Z0], [0.], [0.], [Z0]])

Omega += matrix([[0., 0., 0., 0.],[0., 1., 0., ­-1.],[0., 0., 0.,0.],[0.,­-1., 0., 1.]])
Xi += matrix([[0.], [­-Z1], [0.], [Z1]])

Omega += matrix([[0., 0., 0., 0.],[0., 0., 0., 0.],[0., 0., 1.,-1.],[0.,0., ­-1., 1.]])
Xi += matrix([[0.], [0.], [­-Z2], [Z2]])

 

引入噪音

噪音使得測量地標距離不精準, 假設有兩個機器人位置,第二個在第一個右邊10,並伴有高斯噪音,狀況和高斯噪音以下:

 

假設最後一個點測量的地標距離是1(原本是2),總機率是二者的乘積,最後結果相似 x1/σ+x0/σ=10/σ ,1/σ表明信度,要想這個乘積更大,幾個技巧:1.去掉常數;2.若是能把乘積編程加法,去掉指數3.甚至能夠去掉-1/2

修改代碼,使得最後的測量具備很是高的置信度,係數爲5.您應該獲得[3,2.179,5.714,6.821]做爲答案。 從這個結果中能夠看出,最後一點與地標的差別很是接近1.0的測量差別,由於與其餘測量和運動相比,這個置信度相對較高。

Omega += matrix([[0., 0., 0., 0.],[0., 0., 0., 0.],[0., 0.,5., ­-5.],[0., 0., ­-5., 5.]])
Xi += matrix([[0.], [0.], [­-Z2*5], [Z2*5]])

 

完成SLAM編程

每一時刻都有一組約束(初始位置,移動或者地標測量),把他們裝入矩陣Omega和向量Xi,兩個thing相乘,結果就是路徑和地圖,強度因數1/σ表示信度。

下面是將SLAM適用於廣義環境設置的參數和調用輸出結果:

num_landmarks = 5  # 地標數量
N = 20  # time steps
world_size = 100.0  # 世界的尺寸
measurement_range = 50.0  # 能檢測到地標的檢測範圍 
motion_noise = 2.0  
measurement_noise = 2.0 
distance = 20.0  # 機器人打算移動的距離
data = make_data(N,num_landmarks,world_size,measurement_range,motion_noise,measurement_noise,distance)
result = slam(data,N,num_landmarks,motion_noise,measurement_noise)
print_result(N,num_landmarks,result)

make_data(),裝入環境參數,返回一個運動序列和一個測量序列,即將寫的函數slam()裝入這兩個數據序列和以上這些參數設置,返回一個機器人路徑表和估計的地標位置。

初始位置設置在[50,50],這個世界的中心。

 

取全部的輸入參數,並設置矩陣Ω和矢量Xi的維數。 維度是路徑的長度加上地標數量的兩倍,由於在相同的數據結構中爲每個空格都創建了x與y。而後,爲Ω建立一個矩陣,爲Xi建立一個向量,給它適當的尺寸,而後引入一個約束條件,即初始位置必須是world_size / 2.0,強度值爲1.0。這對最終解決方案沒有影響,由於這是惟一的絕對約束。 可是你能夠看到矩陣的主對角線是1,x是1,y是1,Xi向量同樣。

dim = 2* (N + num_landmarks)
Omega = matrix()
Omega.zero(dim,dim)
Omega.value[0][0] = 1.0
Omega.value[1][1] = 1.0
Xi = matrix()
Xi.zero(dim, 1)
Xi.value[0][0] = world_size / 2
Xi.value[1][0] = world_size / 2

 

S標識位置,L標識座標,每一個格子有x和y組成。如下編寫SLAM代碼。

from math import *
import random

#這裏引入矩陣操做的類機器人的類
def make_data(N, num_landmarks, world_size, measurement_range, motion_noise, measurement_noise, distance)
    complete = False

    while not complete:

        data = []

        # make robot and landmarks
        r = robot(world_size, measurement_range, motion_noise, measurement_noise)
        r.make_landmarks(num_landmarks)
        seen = [False for row in range(num_landmarks)]
    
        # guess an initial motion
        orientation = random.random() * 2.0 * pi
        dx = cos(orientation) * distance
        dy = sin(orientation) * distance
    
        for k in range(N-1):
    
            # sense
            Z = r.sense()

            # check off all landmarks that were observed
            for i in range(len(Z)):
                seen[Z[i][0]] = True
    
            # move
            while not r.move(dx, dy):
                # if we'd be leaving the robot world, pick instead a new direction
                orientation = random.random() * 2.0 * pi
                dx = cos(orientation) * distance
                dy = sin(orientation) * distance

            # memorize data
            data.append([Z, [dx, dy]])

        # we are done when all landmarks were observed; otherwise re-run
        complete = (sum(seen) == num_landmarks)

    print ' '
    print 'Landmarks: ', r.landmarks
    print r

    return data
   
def print_result(N, num_landmarks, result):
    print
    print 'Estimated Pose(s):'
    for i in range(N):
        print '    ['+ ', '.join('%.3f'%x for x in result.value[2*i]) + ', ' \
            + ', '.join('%.3f'%x for x in result.value[2*i+1]) +']'
    print
    print 'Estimated Landmarks:'
    for i in range(num_landmarks):
        print '    ['+ ', '.join('%.3f'%x for x in result.value[2*(N+i)]) + ', ' \
            + ', '.join('%.3f'%x for x in result.value[2*(N+i)+1]) +']'

def
 slam(data, N, num_landmarks, motion_noise, measurement_noise): #set the dimension of the filter dim = 2 * (N + num_landmarks) #make the constraint information matrix and vector Omega = matrix() Omega.zero(dim,dim) Omega.value[0][0] = 1.0 Omega.value[1][1] = 1.0 Xi = matrix() Xi.zero(dim, 1) Xi.value[0][0] = world_size / 2 Xi.value[1][0] = world_size / 2 for k in range(len(data)): #n is the index of the robots pose in the matrix/vector n = k * 2 measurement = data[k][0] motion = data[k][1] # integrate measurements for i in range(len(measurement)): #m is the index of the landmark coordinate in the  #matrix/vector m = 2 * (N + measurement[i][0]) # update the information matrix according to measurement for b in range(2): Omega.value[n+b][n+b] += 1.0 / measurement_noise Omega.value[m+b][m+b] += 1.0 / measurement_noise Omega.value[n+b][m+b] += ­1.0 / measurement_noise Omega.value[m+b][n+b] += ­1.0 / measurement_noise Xi.value[ n + b ][ 0 ] += measurement[i][1+b] / measurement_noise Xi.value[m+b][0] += measurement[i][1+b] / measurement_noise # update the information matrix according to motion for b in range(4): Omega.value[n+b][n+b] += 1.0 / motion_noise for b in range(2): Omega.value[n+b][n+b+2] += ­1.0 / motion_noise Omega.value[n+b+2][n+b ] += ­1.0 / motion_noise Xi.value[n+b][0] += ­motion[b] / motion_noise Xi.value[n+b+2][0] += motion[b] / motion_noise mu = Omega.inverse() * Xi return mu

#這裏調用這節的第一個編程(參數設置及調用輸出)

 

輸入起始位置和全部地標測量位置,得出每次機器人的估計座標位置(即路徑)和全部地標的位置估計

 

 

 

 

兩個月零八天,蒙特卡洛定位——>卡爾曼追蹤定位——>粒子濾波定位——>路徑規劃——>PID控制——>SLAM

How far is self car~

相關文章
相關標籤/搜索