普通最小二乘法的推導證實(轉載)

前言

        普通最小二乘法(ordinary least squares, OLS)是線性迴歸預測問題中一個很重要的概念,在 Introductory Econometrics A Modern Approach (Fourth Edition) 第2章 簡單迴歸模型 中,花了很詳細的篇幅對此做出介紹。應聘數據挖掘崗位,就有考到對普通最小二乘法的推導證實。最小二乘法十分有用,例如能夠用來作推薦系統資金流動預測等。函數

推導證實

(1) 公式推導

(2) 求和性質

        求和性質,具體能夠參考Introductory Econometrics A Modern Approach (Fourth Edition) 一書(計量經濟學導論,第4版,傑弗裏·M·伍德里奇 著)的附錄Aspa

(3) 通常形式

        有了上述推導證實,普通最小二乘法通常形式能夠寫成(字母蓋小帽表示估計值,具體參考應用機率統計):it

重要概念

        接下來簡單地介紹幾個重要概念,並在下一章節給出最小二乘法的無偏估計數據挖掘

        記第次觀測殘差(residual)是yi 的實際值與其擬合值之差:io

        

        其中SST=SSE+SSR。ast

        擬合優度,有時又稱「斷定係數」,迴歸的R2R-squared),用來判斷直線擬合效果:變量

        當R2 = 1時稱爲完美擬合,當R2 = 1時稱爲糟糕擬合,最理想的觀測是,第次狀況 殘差u=0im

        事實上,R2不因的單位變化而變化。統計

        零條件均值,指給定解釋變量的任何值,偏差的指望值爲零。換言之,即 E(u|x)=0數據

無偏估計

        咱們追求零條件均值,獲得OLS 估計量的無偏估計:

        其中,

        如今咱們能夠看到,β1 的估計量等於整體斜率β1 加上偏差 { u1, u2, ..., un }的一個線性組合。

「線性」含義

        線性迴歸問題中,「線性」的含義是指被估計參數β1 β2 是線性相關的,而不關心解釋變量與被解釋變量以何種形式出現,例如y = kx + b,log(y) = kx + b,log(y) = klog(x) + b,etc下面列舉一些經常使用的曲線方程:

一、雙曲線 1/y = a + b/x

令y'=1/y,x'=1/x,則有y'=a+bx'

二、冪函數曲線y=axb

令y'=lny,x'=lnx,a'=lna,則有y'=a'  +bx'

三、指數函數曲線y=aebx

令y'=lny,x'=x,a'=a,則有y'=a'+b  x'

四、負指數函數曲線y=aeb/x(同上)

五、對數函數y=a+blnx

令y'=y,x'=lnx,則有y'=a+bx'

六、S型(Logistic,邏輯斯蒂迴歸)曲線y=K/(1+Ae-λx)

令y'=ln((K-y)/y),a=lnA,則有y'=a-λx

多重線性迴歸

        多重回歸研究的是變量與可控變量x1,x2,...,xk 之間的線性關係,假設

        根據線性代數,則有

        獲得

        與普通最小二乘法推導證實類似,能夠獲得β 的最小二乘估計

        此處不做證實,具體可參考《應用機率統計 張國權 著》第九章 迴歸分析。

相關文章
相關標籤/搜索