(二)ROS系統架構及概念 ROS Architecture and Concepts 以Kinetic爲主更新 附課件PPT

第2章 ROS系統架構及概念 ROS Architecture and Conceptshtml

PPT說明:node


正文用白色,命令或代碼用黃色,右下角爲對應中文譯著頁碼。python

這一章須要掌握ROS文件系統,運行圖級,開源社區等概念,掌握基本命令,會寫ROS節點,啓動文件。shell

屬於ROS基礎內容,可參考:vim

ROS_Kinetic_04 ROS基礎內容(一):http://blog.csdn.net/zhangrelay/article/details/51384724bash

ROS_Kinetic_05 ROS基礎內容(二):http://blog.csdn.net/zhangrelay/article/details/51388204
服務器

ROS_Kinetic_06 ROS基礎內容(三):http://blog.csdn.net/zhangrelay/article/details/51393800
架構

三層:app

•The Filesystem level
•The Computation Graph level
•The Community level
dom

文件系統是功能包的內部構成,文件夾結構,以及所需核心文件等;

運行圖級(計算圖級)節點管理器,主題之間通訊等;

開源社區主要用於資料查找。

$ sudo apt-get install tree

須要查看文件夾列表,推薦使用上面命令。


$ tree -L 1

工做空間

主要有三個文件夾構成src,devel,build,注意功能用途。

$ cmake
$ make

$ catkin_make

$ catkin build

功能包

$ rospack find usb_cam


綜合功能包



$ rosstack find ros_tutorials
/home/relaybot/catkin_ws/src/ros_tutorials/ros_tutorials

消息

$ rosmsg show std_msgs/Header

理解掌握消息的類型。

服務

$ rossrv show turtlesim/Spawn


計算圖級

節點


主題


服務


消息


消息記錄包


節點管理器master

roscore

參數服務器


開源社區

資料寶庫!http://wiki.ros.org/cn/


ROS系統試用練習

ROS文件系統導航

$ rospack find turtlesim
/home/relaybot/catkin_ws/src/ros_tutorials/turtlesim

$ rosstack find ros_comm
/opt/ros/kinetic/share/ros_comm

$ rosls turtlesim
CHANGELOG.rst   images   launch  package.xml  srv
CMakeLists.txt  include  msg     src          tutorials

$ roscd turtlesim
/catkin_ws/src/ros_tutorials/turtlesim$ pwd
/home/relaybot/catkin_ws/src/ros_tutorials/turtlesim



建立工做空間

To see the workspace that ROS is using, use the following command:
$ echo $ROS_PACKAGE_PATH

You will see output similar to the following:
/opt/ros/kinetic/share:/opt/ros/kinetic/stacks

The folder that we are going to create is in ~/dev/catkin_ws/src/. 
To add this folder, we use the following commands:
$ mkdir –p ~/dev/catkin_ws/src
$ cd ~/dev/catkin_ws/src
$ catkin_init_workspace

The next step is building the workspace. 
To do this, we use  the following commands:
$ cd ~/dev/catkin_ws
$ catkin_make

To finish the configuration, use the following command:
$ source devel/setup.bash

You should have this command at the end in your ~/.bashrc file because we used it in Chapter 1, Getting Started with ROS; 
otherwise, you can add it using the following command:
$ echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc

建立功能包與綜合功能包

We will create the new package in our recently initialized workspace using the following commands:
$ cd ~/dev/catkin_ws/src
$ catkin_create_pkg chapter2_tutorials std_msgs roscpp

The format of this command includes the name of the package and the dependencies that will have the package, in our case, std_msgs and roscpp. This is shown in the following command:
catkin_create_pkg [package_name] [dependency1] ... [dependencyN]

編譯功能包

$ cd ~/dev/catkin_ws/
$ catkin_make




$ catkin_make --pkg chapter2_tutorials



運行ROS節點

$ roscore



$ rosnode <param> -h
$ rosnode list -h



$ rosnode list



$ rosrun turtlesim turtlesim_node



$ rosnode info /turtlesim



注意,這時的/turtle1/cmd_vel是[unknown type]。


使用主題

$ rostopic bw -h



$ rosrun turtlesim turtle_teleop_key




why?
$ rosnode info /turtlesim



$ rosnode info /teleop_turtle



$ rostopic echo /turtle1/cmd_vel


此處,說明使用下面命令替代原書中命令:

$ rostopic pub /turtle1/cmd_vel geometry_msgs/Twist -r 1 -- '[1.0, 0.0, 0.0]' '[0.0, 0.0, 1.0]'

補充圖形化:

$ rosrun rqt_publisher rqt_publisher



使用服務

$ rosservice list



$ rosservice call /clear


$ rosservice type /spawn | rossrv show
$ rosservice type /spawn
$ rossrv show turtlesim/Spawn


使用參數服務器

$ rosparam get /background_b
$ rosparam set /background_b 50
$ rosservice call clear


建立節點

example1_a.cpp



#include "ros/ros.h"
#include "std_msgs/String.h"
#include <sstream>

int main(int argc, char **argv)
{
  ros::init(argc, argv, "example1_a");
  ros::NodeHandle n;
  ros::Publisher pub = n.advertise<std_msgs::String>("message", 1000);
  ros::Rate loop_rate(10);
  while (ros::ok())
  {
    std_msgs::String msg;
    std::stringstream ss;
    ss << " I am the example1_a node ";
    msg.data = ss.str();
    //ROS_INFO("%s", msg.data.c_str());
    pub.publish(msg);
    ros::spinOnce();
    loop_rate.sleep();
  }
  return 0;
}

代碼解釋參考書39-40頁。


example1_b.cpp


#include "ros/ros.h"
#include "std_msgs/String.h"

void messageCallback(const std_msgs::String::ConstPtr& msg)
{
  ROS_INFO("I heard: [%s]", msg->data.c_str());
}

int main(int argc, char **argv)
{
  ros::init(argc, argv, "example1_b");
  ros::NodeHandle n;
  ros::Subscriber sub = n.subscribe("message", 1000, messageCallback);
  ros::spin();
  return 0;
}


編譯節點

補充,使用gedit,固然推薦用vim。



須要修改CMakeLists.txt ,具體參考ppt或書41頁。


If ROS is not running on your computer, you will have to use the  following command:
$ roscore

You can check whether ROS is running using the rosnode list command as follows:
$ rosnode list

Now run both nodes in different shells:
$ rosrun chapter2_tutorials example1_a
$ rosrun chapter2_tutorials example1_b




建立msg和srv文件

$ rosmsg show chapter2_tutorials/chapter2_msg1



$ rossrv show chapter2_tutorials/chapter2_srv1



使用新建的srv和msg文件

example2_a.cpp

#include "ros/ros.h"
#include "chapter2_tutorials/chapter2_srv1.h"

bool add(chapter2_tutorials::chapter2_srv1::Request  &req,
         chapter2_tutorials::chapter2_srv1::Response &res)
{
  res.sum = req.A + req.B + req.C;
  ROS_INFO("request: A=%d, B=%d C=%d", (int)req.A, (int)req.B, (int)req.C);
  ROS_INFO("sending back response: [%d]", (int)res.sum);
  return true;
}

int main(int argc, char **argv)
{
  ros::init(argc, argv, "add_3_ints_server");
  ros::NodeHandle n;

  ros::ServiceServer service = n.advertiseService("add_3_ints", add);
  ROS_INFO("Ready to add 3 ints.");
  ros::spin();

  return 0;
}

注意,#include "chapter2_tutorials/chapter2_srv1.h",由編譯系統依據srv或msg自動生成對應的.h。


example2_b.cpp

#include "ros/ros.h"
#include "chapter2_tutorials/chapter2_srv1.h"
#include <cstdlib>

int main(int argc, char **argv)
{
  ros::init(argc, argv, "add_3_ints_client");
  if (argc != 4)
  {
    ROS_INFO("usage: add_3_ints_client A B C ");
    return 1;
  }

  ros::NodeHandle n;
  ros::ServiceClient client = n.serviceClient<chapter2_tutorials::chapter2_srv1>("add_3_ints");
  chapter2_tutorials::chapter2_srv1 srv;
  srv.request.A = atoll(argv[1]);
  srv.request.B = atoll(argv[2]);
  srv.request.C = atoll(argv[3]);
  if (client.call(srv))
  {
    ROS_INFO("Sum: %ld", (long int)srv.response.sum);
  }
  else
  {
    ROS_ERROR("Failed to call service add_two_ints");
    return 1;
  }

  return 0;
}

Now execute the following command:
$ cd ~/dev/catkin_ws
$ catkin_make
Execute the following command lines:
$ rosrun chapter2_tutorials example2_a
$ rosrun chapter2_tutorials example2_b 11 22 33




example3_a.cpp

#include "ros/ros.h"
#include "chapter2_tutorials/chapter2_msg1.h"
#include <sstream>

int main(int argc, char **argv)
{
  ros::init(argc, argv, "example3_a");
  ros::NodeHandle n;
  ros::Publisher pub = n.advertise<chapter2_tutorials::chapter2_msg1>("message", 1000);
  ros::Rate loop_rate(10);
  while (ros::ok())
  {
    chapter2_tutorials::chapter2_msg1 msg;
    msg.A = 1;
    msg.B = 2;
    msg.C = 3;
    pub.publish(msg);
    ros::spinOnce();
    loop_rate.sleep();
  }
  return 0;
}

example3_b.cpp

#include "ros/ros.h"
#include "chapter2_tutorials/chapter2_msg1.h"

void messageCallback(const chapter2_tutorials::chapter2_msg1::ConstPtr& msg)
{
  ROS_INFO("I heard: [%d] [%d] [%d]", msg->A, msg->B, msg->C);
}

int main(int argc, char **argv)
{
  ros::init(argc, argv, "example3_b");
  ros::NodeHandle n;
  ros::Subscriber sub = n.subscribe("message", 1000, messageCallback);
  ros::spin();
  return 0;
}

補充48頁:

$ rosrun chapter2_tutorials example3_a

$ rosrun chapter2_tutorials example3_b



啓動文件launch

一次啓動多個節點,可是調試信息等不顯示。

chapter2.launch

<?xml version="1.0"?>
<launch>
	<node name ="chap2_example1_a" pkg="chapter2_tutorials" type="chap2_example1_a"/>
	<node name ="chap2_example1_b" pkg="chapter2_tutorials" type="chap2_example1_b"/>
</launch> 

$ roslaunch chapter2_tutorials chapter2.launch




動態參數

chapter2.cfg  (Python)

#!/usr/bin/env python
PACKAGE = "chapter2_tutorials"

from dynamic_reconfigure.parameter_generator_catkin import *

gen = ParameterGenerator()

gen.add("int_param",    int_t,    0, "An Integer parameter", 1,  0, 100)
gen.add("double_param", double_t, 0, "A double parameter",    .1, 0,   1)
gen.add("str_param",    str_t,    0, "A string parameter",  "Chapter2_dynamic_reconfigure")
gen.add("bool_param",   bool_t,   0, "A Boolean parameter",  True)

size_enum = gen.enum([ gen.const("Low",      int_t, 0, "Low is 0"),
                       gen.const("Medium",     int_t, 1, "Medium is 1"),
                       gen.const("High",      int_t, 2, "Hight is 2")],
                     "Select from the list")

gen.add("size", int_t, 0, "Select from the list", 1, 0, 3, edit_method=size_enum)

exit(gen.generate(PACKAGE, "chapter2_tutorials", "chapter2_"))

example4.cpp

#include <ros/ros.h>

#include <dynamic_reconfigure/server.h>
#include <chapter2_tutorials/chapter2_Config.h>

void callback(chapter2_tutorials::chapter2_Config &config, uint32_t level) {
  ROS_INFO("Reconfigure Request: %d %f %s %s %d", 
            config.int_param, config.double_param, 
            config.str_param.c_str(), 
            config.bool_param?"True":"False", 
            config.size);
}

int main(int argc, char **argv) {
  ros::init(argc, argv, "example4");

  dynamic_reconfigure::Server<chapter2_tutorials::chapter2_Config> server;
  dynamic_reconfigure::Server<chapter2_tutorials::chapter2_Config>::CallbackType f;

  f = boost::bind(&callback, _1, _2);
  server.setCallback(f);

  ROS_INFO("Spinning node");
  ros::spin();
  return 0;
}

$ roscore
$ rosrun chapter2_tutorials example4
$ rosrun rqt_reconfigure rqt_reconfigure




本章課件下載:http://download.csdn.net/detail/zhangrelay/9741016

補充習題與答案:

1 啓動文件

使用一個啓動文件,啓動小烏龜並繪製方形:

turtlesim_drawsquare.launch

<!--turtlesim drawsquare launch-->
<launch>

  <node name="turtlesim_node1" pkg="turtlesim" type="turtlesim_node"/>
  <node name="turtlesim_node2" pkg="turtlesim" type="turtlesim_node"/>
  <node name="draw_square" pkg="turtlesim" type="draw_square"/>
  <node name="rqt_graph" pkg="rqt_graph" type="rqt_graph"/>

</launch>



2 節點和主題

turtlesim區域覆蓋(無障礙物)

grid_clean.cpp

#include "ros/ros.h"
#include "geometry_msgs/Twist.h"
#include "turtlesim/Pose.h"
#include <sstream>

using namespace std;

ros::Publisher velocity_publisher;
ros::Subscriber pose_subscriber;	// to determine the position for turning the robot in an absolute orientation --> in the setDesiredOrientation fn
turtlesim::Pose turtlesim_pose;

const double x_min = 0.0;
const double y_min = 0.0;
const double x_max = 11.0;
const double y_max = 11.0;

const double PI = 3.14159265359;

void move(double speed, double distance, bool isForward);
void rotate(double angular_speed, double angle, bool cloclwise);	//this will rotate the turtle at specified angle from its current angle
double degrees2radians(double angle_in_degrees);		
double setDesiredOrientation(double desired_angle_radians);	//this will rotate the turtle at an absolute angle, whatever its current angle is
void poseCallback(const turtlesim::Pose::ConstPtr & pose_message);	//Callback fn everytime the turtle pose msg is published over the /turtle1/pose topic.
void moveGoal(turtlesim::Pose goal_pose, double distance_tolerance);	//this will move robot to goal
double getDistance(double x1, double y1, double x2, double y2);
void gridClean();

int main(int argc, char **argv)
{
	// Initiate new ROS node named "talker"
	ros::init(argc, argv, "turtlesim_cleaner");
	ros::NodeHandle n;
	double speed, angular_speed;
	double distance, angle;
	bool isForward, clockwise;

	velocity_publisher = n.advertise<geometry_msgs::Twist>("/turtle1/cmd_vel", 1000);
	pose_subscriber = n.subscribe("/turtle1/pose", 10, poseCallback);	//call poseCallback everytime the turtle pose msg is published over the /turtle1/pose topic.
	ros::Rate loop_rate(0.5);

	//	/turtle1/cmd_vel is the Topic name
	//	/geometry_msgs::Twist is the msg type 
	ROS_INFO("\n\n\n ********START TESTING*********\n");

	/*********This is to move and rotate the robot as the user.**************
	cout<<"enter speed: ";
	cin>>speed;
	cout<<"enter distance: ";
	cin>>distance;
	cout<<"forward?: ";
	cin>>isForward;
	move(speed, distance, isForward);
						
	cout<<"enter angular velocity: ";
	cin>>angular_speed;
	cout<<"enter angle: ";
	cin>>angle;
	cout<<"Clockwise?: ";
	cin>>clockwise;
	rotate(degrees2radians(angular_speed), degrees2radians(angle), clockwise);
	*/

	/**************This is to change the Absolute Orientation***************
	setDesiredOrientation(degrees2radians(120));
	ros::Rate loop_rate(0.5);
	loop_rate.sleep();
	setDesiredOrientation(degrees2radians(-60));
	loop_rate.sleep();
	setDesiredOrientation(degrees2radians(0));
	*/


	/****************This is to move the robot to a goal position*************
	turtlesim::Pose goal_pose;
	goal_pose.x = 1;
	goal_pose.y = 1;
	goal_pose.theta = 0;
	moveGoal(goal_pose, 0.01);
	loop_rate.sleep();	
	*/

	gridClean();

	ros::spin();

	return 0;
}

/**
 *  makes the robot move with a certain linear velocity for a 
 *  certain distance in a forward or backward straight direction. 
 */
void move(double speed, double distance, bool isForward)
{
	geometry_msgs::Twist vel_msg;
	//set a random linear velocity in the x-axis
	if (isForward)
		vel_msg.linear.x =abs(speed);
	else
		vel_msg.linear.x =-abs(speed);
	vel_msg.linear.y =0;
	vel_msg.linear.z =0;
	//set a random angular velocity in the y-axis
	vel_msg.angular.x = 0;
	vel_msg.angular.y = 0;
	vel_msg.angular.z =0;

	double t0 = ros::Time::now().toSec();
	double current_distance = 0.0;
	ros::Rate loop_rate(100);
	do{
		velocity_publisher.publish(vel_msg);
		double t1 = ros::Time::now().toSec();
		current_distance = speed * (t1-t0);
		ros::spinOnce();
		loop_rate.sleep();
		//cout<<(t1-t0)<<", "<<current_distance <<", "<<distance<<endl;
	}while(current_distance<distance);
	vel_msg.linear.x =0;
	velocity_publisher.publish(vel_msg);
}

/**
 *  makes the robot turn with a certain angular velocity, for 
 *  a certain distance in either clockwise or counter-clockwise direction  
 */
void rotate (double angular_speed, double relative_angle, bool clockwise)
{
	geometry_msgs::Twist vel_msg;
	//set a random linear velocity in the x-axis
	vel_msg.linear.x =0;
	vel_msg.linear.y =0;
	vel_msg.linear.z =0;
	//set a random angular velocity in the y-axis
	vel_msg.angular.x = 0;
	vel_msg.angular.y = 0;
	if (clockwise)
		vel_msg.angular.z =-abs(angular_speed);
	else
	 	vel_msg.angular.z =abs(angular_speed);

	double t0 = ros::Time::now().toSec();
	double current_angle = 0.0;
	ros::Rate loop_rate(1000);
	do{
		velocity_publisher.publish(vel_msg);
		double t1 = ros::Time::now().toSec();
		current_angle = angular_speed * (t1-t0);
		ros::spinOnce();
		loop_rate.sleep();
		//cout<<(t1-t0)<<", "<<current_angle <<", "<<relative_angle<<endl;
	}while(current_angle<relative_angle);
	vel_msg.angular.z =0;
	velocity_publisher.publish(vel_msg);
}

/**
 *  converts angles from degree to radians  
 */
double degrees2radians(double angle_in_degrees)
{
	return angle_in_degrees *PI /180.0;
}

/**
 *  turns the robot to a desried absolute angle  
 */
double setDesiredOrientation(double desired_angle_radians)
{	
	double relative_angle_radians = desired_angle_radians - turtlesim_pose.theta;
	//if we want to turn at a perticular orientation, we subtract the current orientation from it
	bool clockwise = ((relative_angle_radians<0)?true:false);
	//cout<<desired_angle_radians <<","<<turtlesim_pose.theta<<","<<relative_angle_radians<<","<<clockwise<<endl;
	rotate (abs(relative_angle_radians), abs(relative_angle_radians), clockwise);
}

/**
 * A callback function to update the pose of the robot  
 */
void poseCallback(const turtlesim::Pose::ConstPtr & pose_message)
{
	turtlesim_pose.x=pose_message->x;
	turtlesim_pose.y=pose_message->y;
	turtlesim_pose.theta=pose_message->theta;
}

/*
 * A proportional controller to make the robot moves towards a goal pose
 */
void moveGoal(turtlesim::Pose goal_pose, double distance_tolerance)
{
	//We implement a Proportional Controller. We need to go from (x,y) to (x',y'). Then, linear velocity v' = K ((x'-x)^2 + (y'-y)^2)^0.5 where K is the constant and ((x'-x)^2 + (y'-y)^2)^0.5 is the Euclidian distance. The steering angle theta = tan^-1(y'-y)/(x'-x) is the angle between these 2 points.
	geometry_msgs::Twist vel_msg;

	ros::Rate loop_rate(10);
	do{
		//linear velocity 
		vel_msg.linear.x = 1.5*getDistance(turtlesim_pose.x, turtlesim_pose.y, goal_pose.x, goal_pose.y);
		vel_msg.linear.y = 0;
		vel_msg.linear.z = 0;
		//angular velocity
		vel_msg.angular.x = 0;
		vel_msg.angular.y = 0;
		vel_msg.angular.z = 4*(atan2(goal_pose.y - turtlesim_pose.y, goal_pose.x - turtlesim_pose.x)-turtlesim_pose.theta);

		velocity_publisher.publish(vel_msg);

		ros::spinOnce();
		loop_rate.sleep();

	}while(getDistance(turtlesim_pose.x, turtlesim_pose.y, goal_pose.x, goal_pose.y)>distance_tolerance);
	cout<<"end move goal"<<endl;
	vel_msg.linear.x = 0;
	vel_msg.angular.z = 0;
	velocity_publisher.publish(vel_msg);

}

/*
 * get the euclidian distance between two points 
 */
double getDistance(double x1, double y1, double x2, double y2)
{
	return sqrt(pow((x2-x1),2) + pow((y2-y1),2));
}

/*
 * the cleaning appication function. returns true when completed.
 */
void gridClean()
{
	ros::Rate loop(0.5);
	turtlesim::Pose goal_pose;
	goal_pose.x = 1;
	goal_pose.y = 1;
	goal_pose.theta = 0;
	moveGoal(goal_pose, 0.01);
	loop.sleep();
	setDesiredOrientation(0);
	loop.sleep();

	move(2,9, true);
	loop.sleep();
	rotate(degrees2radians(10), degrees2radians(90), false);
	loop.sleep();
	move(2,9,true);

	rotate(degrees2radians(10), degrees2radians(90), false);
	loop.sleep();
	move(2,1,true);
	rotate(degrees2radians(10), degrees2radians(90), false);
	loop.sleep();
	move(2,9, true);

	rotate(degrees2radians(30), degrees2radians(90), true);
	loop.sleep();
	move(2,1,true);
	rotate(degrees2radians(30), degrees2radians(90), true);
	loop.sleep();
	move(2,9, true);

	//double distance = getDistance(turtlesim_pose.x, turtlesim_pose.y, x_max
}




spiral_clean.cpp

#include "ros/ros.h"
#include "geometry_msgs/Twist.h"
#include "turtlesim/Pose.h"
#include <sstream>

using namespace std;

ros::Publisher velocity_publisher;
ros::Subscriber pose_subscriber;	// to determine the position for turning the robot in an absolute orientation --> in the setDesiredOrientation fn
turtlesim::Pose turtlesim_pose;

const double x_min = 0.0;
const double y_min = 0.0;
const double x_max = 11.0;
const double y_max = 11.0;

const double PI = 3.14159265359;

void move(double speed, double distance, bool isForward);
void rotate(double angular_speed, double angle, bool cloclwise);	//this will rotate the turtle at specified angle from its current angle
double degrees2radians(double angle_in_degrees);		
double setDesiredOrientation(double desired_angle_radians);	//this will rotate the turtle at an absolute angle, whatever its current angle is
void poseCallback(const turtlesim::Pose::ConstPtr & pose_message);	//Callback fn everytime the turtle pose msg is published over the /turtle1/pose topic.
void moveGoal(turtlesim::Pose goal_pose, double distance_tolerance);	//this will move robot to goal
double getDistance(double x1, double y1, double x2, double y2);
void gridClean();
void spiralClean();

int main(int argc, char **argv)
{
	// Initiate new ROS node named "talker"
	ros::init(argc, argv, "turtlesim_cleaner");
	ros::NodeHandle n;
	double speed, angular_speed;
	double distance, angle;
	bool isForward, clockwise;

	velocity_publisher = n.advertise<geometry_msgs::Twist>("/turtle1/cmd_vel", 1000);
	pose_subscriber = n.subscribe("/turtle1/pose", 10, poseCallback);	//call poseCallback everytime the turtle pose msg is published over the /turtle1/pose topic.
	ros::Rate loop_rate(0.5);

	//	/turtle1/cmd_vel is the Topic name
	//	/geometry_msgs::Twist is the msg type 
	ROS_INFO("\n\n\n ********START TESTING*********\n");

	/*********This is to move and rotate the robot as the user.**************
	cout<<"enter speed: ";
	cin>>speed;
	cout<<"enter distance: ";
	cin>>distance;
	cout<<"forward?: ";
	cin>>isForward;
	move(speed, distance, isForward);
						
	cout<<"enter angular velocity: ";
	cin>>angular_speed;
	cout<<"enter angle: ";
	cin>>angle;
	cout<<"Clockwise?: ";
	cin>>clockwise;
	rotate(degrees2radians(angular_speed), degrees2radians(angle), clockwise);
	*/

	/**************This is to change the Absolute Orientation***************
	setDesiredOrientation(degrees2radians(120));
	ros::Rate loop_rate(0.5);
	loop_rate.sleep();
	setDesiredOrientation(degrees2radians(-60));
	loop_rate.sleep();
	setDesiredOrientation(degrees2radians(0));
	*/


	/****************This is to move the robot to a goal position*************
	turtlesim::Pose goal_pose;
	goal_pose.x = 1;
	goal_pose.y = 1;
	goal_pose.theta = 0;
	moveGoal(goal_pose, 0.01);
	loop_rate.sleep();	
	*/

	//gridClean();	//for the grid clean

	spiralClean();

	ros::spin();

	return 0;
}

/**
 *  makes the robot move with a certain linear velocity for a 
 *  certain distance in a forward or backward straight direction. 
 */
void move(double speed, double distance, bool isForward)
{
	geometry_msgs::Twist vel_msg;
	//set a random linear velocity in the x-axis
	if (isForward)
		vel_msg.linear.x =abs(speed);
	else
		vel_msg.linear.x =-abs(speed);
	vel_msg.linear.y =0;
	vel_msg.linear.z =0;
	//set a random angular velocity in the y-axis
	vel_msg.angular.x = 0;
	vel_msg.angular.y = 0;
	vel_msg.angular.z =0;

	double t0 = ros::Time::now().toSec();
	double current_distance = 0.0;
	ros::Rate loop_rate(100);
	do{
		velocity_publisher.publish(vel_msg);
		double t1 = ros::Time::now().toSec();
		current_distance = speed * (t1-t0);
		ros::spinOnce();
		loop_rate.sleep();
		//cout<<(t1-t0)<<", "<<current_distance <<", "<<distance<<endl;
	}while(current_distance<distance);
	vel_msg.linear.x =0;
	velocity_publisher.publish(vel_msg);
}

/**
 *  makes the robot turn with a certain angular velocity, for 
 *  a certain distance in either clockwise or counter-clockwise direction  
 */
void rotate (double angular_speed, double relative_angle, bool clockwise)
{
	geometry_msgs::Twist vel_msg;
	//set a random linear velocity in the x-axis
	vel_msg.linear.x =0;
	vel_msg.linear.y =0;
	vel_msg.linear.z =0;
	//set a random angular velocity in the y-axis
	vel_msg.angular.x = 0;
	vel_msg.angular.y = 0;
	if (clockwise)
		vel_msg.angular.z =-abs(angular_speed);
	else
	 	vel_msg.angular.z =abs(angular_speed);

	double t0 = ros::Time::now().toSec();
	double current_angle = 0.0;
	ros::Rate loop_rate(1000);
	do{
		velocity_publisher.publish(vel_msg);
		double t1 = ros::Time::now().toSec();
		current_angle = angular_speed * (t1-t0);
		ros::spinOnce();
		loop_rate.sleep();
		//cout<<(t1-t0)<<", "<<current_angle <<", "<<relative_angle<<endl;
	}while(current_angle<relative_angle);
	vel_msg.angular.z =0;
	velocity_publisher.publish(vel_msg);
}

/**
 *  converts angles from degree to radians  
 */
double degrees2radians(double angle_in_degrees)
{
	return angle_in_degrees *PI /180.0;
}

/**
 *  turns the robot to a desried absolute angle  
 */
double setDesiredOrientation(double desired_angle_radians)
{	
	double relative_angle_radians = desired_angle_radians - turtlesim_pose.theta;
	//if we want to turn at a perticular orientation, we subtract the current orientation from it
	bool clockwise = ((relative_angle_radians<0)?true:false);
	//cout<<desired_angle_radians <<","<<turtlesim_pose.theta<<","<<relative_angle_radians<<","<<clockwise<<endl;
	rotate (abs(relative_angle_radians), abs(relative_angle_radians), clockwise);
}

/**
 * A callback function to update the pose of the robot  
 */
void poseCallback(const turtlesim::Pose::ConstPtr & pose_message)
{
	turtlesim_pose.x=pose_message->x;
	turtlesim_pose.y=pose_message->y;
	turtlesim_pose.theta=pose_message->theta;
}

/*
 * A proportional controller to make the robot moves towards a goal pose
 */
void moveGoal(turtlesim::Pose goal_pose, double distance_tolerance)
{
	//We implement a Proportional Controller. We need to go from (x,y) to (x',y'). Then, linear velocity v' = K ((x'-x)^2 + (y'-y)^2)^0.5 where K is the constant and ((x'-x)^2 + (y'-y)^2)^0.5 is the Euclidian distance. The steering angle theta = tan^-1(y'-y)/(x'-x) is the angle between these 2 points.
	geometry_msgs::Twist vel_msg;

	ros::Rate loop_rate(10);
	do{
		//linear velocity 
		vel_msg.linear.x = 1.5*getDistance(turtlesim_pose.x, turtlesim_pose.y, goal_pose.x, goal_pose.y);
		vel_msg.linear.y = 0;
		vel_msg.linear.z = 0;
		//angular velocity
		vel_msg.angular.x = 0;
		vel_msg.angular.y = 0;
		vel_msg.angular.z = 4*(atan2(goal_pose.y - turtlesim_pose.y, goal_pose.x - turtlesim_pose.x)-turtlesim_pose.theta);

		velocity_publisher.publish(vel_msg);

		ros::spinOnce();
		loop_rate.sleep();

	}while(getDistance(turtlesim_pose.x, turtlesim_pose.y, goal_pose.x, goal_pose.y)>distance_tolerance);
	cout<<"end move goal"<<endl;
	vel_msg.linear.x = 0;
	vel_msg.angular.z = 0;
	velocity_publisher.publish(vel_msg);

}

/*
 * get the euclidian distance between two points 
 */
double getDistance(double x1, double y1, double x2, double y2)
{
	return sqrt(pow((x2-x1),2) + pow((y2-y1),2));
}

/*
 * the cleaning appication function. returns true when completed.
 */
void gridClean()
{
	ros::Rate loop(0.5);
	turtlesim::Pose goal_pose;
	goal_pose.x = 1;
	goal_pose.y = 1;
	goal_pose.theta = 0;
	moveGoal(goal_pose, 0.01);
	loop.sleep();
	setDesiredOrientation(0);
	loop.sleep();

	move(2,9, true);
	loop.sleep();
	rotate(degrees2radians(10), degrees2radians(90), false);
	loop.sleep();
	move(2,9,true);

	rotate(degrees2radians(10), degrees2radians(90), false);
	loop.sleep();
	move(2,1,true);
	rotate(degrees2radians(10), degrees2radians(90), false);
	loop.sleep();
	move(2,9, true);

	rotate(degrees2radians(30), degrees2radians(90), true);
	loop.sleep();
	move(2,1,true);
	rotate(degrees2radians(30), degrees2radians(90), true);
	loop.sleep();
	move(2,9, true);

	//double distance = getDistance(turtlesim_pose.x, turtlesim_pose.y, x_max
}

void spiralClean()
{
	geometry_msgs::Twist vel_msg;
	double count = 0;

	double constant_speed = 4;
	double vk = 1;
	double wk = 2;
	double rk = 0.5;
	ros::Rate loop(1);

	do{
		rk = rk + 0.5;
		vel_msg.linear.x = rk;
		vel_msg.linear.y = 0;
		vel_msg.linear.z = 0;

		vel_msg.angular.x = 0;
		vel_msg.angular.y = 0;
		vel_msg.angular.z = constant_speed;

		cout<<"vel_msg.linear.x = "<<vel_msg.linear.x<<endl;
		cout<<"vel_msg.angular.z = "<<vel_msg.angular.z<<endl;
		velocity_publisher.publish(vel_msg);
		ros::spinOnce();

		loop.sleep();
		cout<<rk<<" , "<<vk <<" , "<<wk<<endl;
	}while((turtlesim_pose.x<10.5)&&(turtlesim_pose.y<10.5));
	vel_msg.linear.x = 0;
	velocity_publisher.publish(vel_msg);

}


3 一個節點發布小烏龜位置姿態信息,另外一個節點訂閱並移動小烏龜到指定位姿。(參考示例Python)

move.py

#!/usr/bin/env python
import rospy
from geometry_msgs.msg import Twist

def move():
    # Starts a new node
    rospy.init_node('robot_cleaner', anonymous=True)
    velocity_publisher = rospy.Publisher('/turtle1/cmd_vel', Twist, queue_size=10)
    vel_msg = Twist()
    
    #Receiveing the user's input
    print("Let's move your robot")
    speed = input("Input your speed:")
    distance = input("Type your distance:")
    isForward = input("Foward?: ")
    
    #Checking if the movement is forward or backwards
    if(isForward):
        vel_msg.linear.x = abs(speed)
    else:
        vel_msg.linear.x = -abs(speed)
    #Since we are moving just in x-axis
    vel_msg.linear.y = 0
    vel_msg.linear.z = 0
    vel_msg.angular.x = 0
    vel_msg.angular.y = 0
    vel_msg.angular.z = 0
    
    while not rospy.is_shutdown():

        #Setting the current time for distance calculus
        t0 = float(rospy.Time.now().to_sec())
        current_distance = 0

        #Loop to move the turtle in an specified distance
        while(current_distance < distance):
            #Publish the velocity
            velocity_publisher.publish(vel_msg)
            #Takes actual time to velocity calculus
            t1=float(rospy.Time.now().to_sec())
            #Calculates distancePoseStamped
            current_distance= speed*(t1-t0)
        #After the loop, stops the robot
        vel_msg.linear.x = 0
        #Force the robot to stop
        velocity_publisher.publish(vel_msg)

if __name__ == '__main__':
    try:
        #Testing our function
        move()
    except rospy.ROSInterruptException: pass





rotate.py

#!/usr/bin/env python
import rospy
from geometry_msgs.msg import Twist
PI = 3.1415926535897

def rotate():

    #Starts a new node
    rospy.init_node('robot_cleaner', anonymous=True)
    velocity_publisher = rospy.Publisher('/turtle1/cmd_vel', Twist, queue_size=10)
    vel_msg = Twist()

    # Receiveing the user's input
    print("Let's rotate your robot")
    speed = input("Input your speed (degrees/sec):")
    angle = input("Type your distance (degrees):")
    clockwise = input("Clowkise?: ") #True or false

    #Converting from angles to radians
    angular_speed = speed*2*PI/360
    relative_angle = angle*2*PI/360

    #We wont use linear components
    vel_msg.linear.x=0
    vel_msg.linear.y=0
    vel_msg.linear.z=0
    vel_msg.angular.x = 0
    vel_msg.angular.y = 0

    # Checking if our movement is CW or CCW
    if clockwise:
        vel_msg.angular.z = -abs(angular_speed)
    else:
        vel_msg.angular.z = abs(angular_speed)
    # Setting the current time for distance calculus
    t0 = rospy.Time.now().to_sec()
    current_angle = 0

    while(current_angle < relative_angle):
        velocity_publisher.publish(vel_msg)
        t1 = rospy.Time.now().to_sec()
        current_angle = angular_speed*(t1-t0)


    #Forcing our robot to stop
    vel_msg.angular.z = 0
    velocity_publisher.publish(vel_msg)
    rospy.spin()

if __name__ == '__main__':
    try:
        # Testing our function
        rotate()
    except rospy.ROSInterruptException:pass





gotogoal.py

#!/usr/bin/env python
import rospy
from geometry_msgs.msg  import Twist
from turtlesim.msg import Pose
from math import pow,atan2,sqrt

class turtlebot():

    def __init__(self):
        #Creating our node,publisher and subscriber
        rospy.init_node('turtlebot_controller', anonymous=True)
        self.velocity_publisher = rospy.Publisher('/turtle1/cmd_vel', Twist, queue_size=10)
        self.pose_subscriber = rospy.Subscriber('/turtle1/pose', Pose, self.callback)
        self.pose = Pose()
        self.rate = rospy.Rate(10)

    #Callback function implementing the pose value received
    def callback(self, data):
        self.pose = data
        self.pose.x = round(self.pose.x, 4)
        self.pose.y = round(self.pose.y, 4)

    def get_distance(self, goal_x, goal_y):
        distance = sqrt(pow((goal_x - self.pose.x), 2) + pow((goal_y - self.pose.y), 2))
        return distance

    def move2goal(self):
        goal_pose = Pose()
        goal_pose.x = input("Set your x goal:")
        goal_pose.y = input("Set your y goal:")
        distance_tolerance = input("Set your tolerance:")
        vel_msg = Twist()


        while sqrt(pow((goal_pose.x - self.pose.x), 2) + pow((goal_pose.y - self.pose.y), 2)) >= distance_tolerance:

            #Porportional Controller
            #linear velocity in the x-axis:
            vel_msg.linear.x = 1.5 * sqrt(pow((goal_pose.x - self.pose.x), 2) + pow((goal_pose.y - self.pose.y), 2))
            vel_msg.linear.y = 0
            vel_msg.linear.z = 0

            #angular velocity in the z-axis:
            vel_msg.angular.x = 0
            vel_msg.angular.y = 0
            vel_msg.angular.z = 4 * (atan2(goal_pose.y - self.pose.y, goal_pose.x - self.pose.x) - self.pose.theta)

            #Publishing our vel_msg
            self.velocity_publisher.publish(vel_msg)
            self.rate.sleep()
        #Stopping our robot after the movement is over
        vel_msg.linear.x = 0
        vel_msg.angular.z =0
        self.velocity_publisher.publish(vel_msg)

        rospy.spin()

if __name__ == '__main__':
    try:
        #Testing our function
        x = turtlebot()
        x.move2goal()

    except rospy.ROSInterruptException: pass





-End-

相關文章
相關標籤/搜索