1.Beam Modelide
Beam Model我將它叫作測量光束模型。我的理解,它是一種徹底的物理模型,只針對激光發出的測量光束建模。將一次測量偏差分解爲四個偏差。函數
$ph_{hit}$,測量自己產生的偏差,符合高斯分佈。spa
$ph_{xx}$,因爲存在運動物體產生的偏差。rest
...code
2.Likehood fieldorm
似然場模型,和測量光束模型相比,考慮了地圖的因素。再也不是對激光的掃描線物理建模,而是考慮測量到的物體的因素。blog
似然比模型自己是一個傳感器觀測模型,之因此能夠實現掃描匹配,是經過劃分柵格,步進的方式求的最大的Score,將此做爲最佳的位姿。ci
for k=1:size(zt,1)
if zt(k,2)>0
d = -grid_dim/2;
else
d = grid_dim/2;
end
phi = pi_to_pi(zt(k,2) + x(3));
if zt(k,1) ~= Z_max
ppx = [x(1),x(1) + zt(k,1)*cos(phi) + d];
ppy = [x(2),x(2) + zt(k,1)*sin(phi) + d];
end_points = [end_points;ppx(2),ppy(2)];
wm = likelihood_field_range_finder_model(X(j,:)',xsensor,...
zt(k,:)',nearest_wall, grid_dim, std_hit,Z_weights,Z_max);
W(j) = W(j) * wm;
else
dist = Z_max + std_hit*randn(1);
ppx = [x(1),x(1) + dist*cos(phi) + d];
ppy = [x(2),x(2) + dist*sin(phi) + d];
missed_points = [missed_points;ppx(2),ppy(2)];
end
set(handle_sensor_ray(k),'XData', ppx, 'YData', ppy)
end
function q = likelihood_field_range_finder_model(X,x_sensor,zt,N,dim,std_hit,Zw,z_max) % retorna probabilidad de medida range finder :) % X col, zt col, xsen col [n,m] = size(N); % Robot global position and orientation theta = X(3); % Beam global angle theta_sen = zt(2); phi = pi_to_pi(theta + theta_sen); %Tranf matrix in case sensor has relative position respecto to robot's CG rotS = [cos(theta),-sin(theta);sin(theta),cos(theta)]; % Prob. distros parameters sigmaR = std_hit; zhit = Zw(1); zrand = Zw(2); zmax = Zw(3); % Actual algo q = 1; if zt(1) ~= z_max % get global pos of end point of measument xz = X(1:2) + rotS*x_sensor + zt(1)*[cos(phi); sin(phi)]; xi = floor(xz(1)/dim) + 1; yi = floor(xz(2)/dim) + 1; % if end point doesn't lay inside map: unknown if xi<1 || xi>n || yi<1 || yi>m q = 1.0/z_max; % all measurements equally likely, uniform in range [0-zmax] return end dist2 = N(xi,yi); gd = gauss_1D(0,sigmaR,dist2); q = zhit*gd + zrand/zmax; end end
3.Correlation based sensor models相關分析模型rem
XX提出了一種用相關函數表達馬爾科夫過程的掃描匹配方法。get
互相關方法Cross-Correlation,另外相關分析在進行匹配時也能夠應用,好比對角度直方圖進行互相關分析,計算變換矩陣。
參考文獻:A Map Based On Laser scans without geometric interpretation
circular Cross-Correlation的Matlab實現
1 % Computes the circular cross-correlation between two sequences 2 % 3 % a,b the two sequences 4 % normalize if true, normalize in [0,1] 5 % 6 function c = circularCrossCorrelation(a,b,normalize) 7 8 for k=1:length(a) 9 c(k)=a*b'; 10 b=[b(end),b(1:end-1)]; % circular shift 11 end 12 13 if normalize 14 minimum = min(c); 15 maximum = max(c); 16 c = (c - minimum) / (maximum-minimum); 17 end
4.MCL
蒙特卡洛方法
5.AngleHistogram
角度直方圖
6.ICP/PLICP/MBICP/IDL
屬於ICP系列,經典ICP方法,點到線距離ICP,
7.NDT
正態分佈變換
8.pIC
結合機率的方法
9.線特徵
目前應用線段進行匹配的試驗始終不理想:由於線對應容易產生錯誤,並且累積偏差彷佛也很明顯!