JavaShuo
欄目
標籤
一個高等代數證明題:若AX=0的解空間爲U,則U的正交補是由A的行向量組張成的
時間 2021-01-17
標籤
數學
高等代數
欄目
應用數學
简体版
原文
原文鏈接
證明AX=0的解空間的正交補是由A的行向量組張成的,這個題曾是我百思不得其解的一道題。以上解題過程來自我的高代老師,以下的總結是我在看了這個題的解題思路之後的感悟。原題其實是U的正交補是由A的轉置的列向量張成的,當然A的轉置的列向量就是A的行向量。我當時在想,爲什麼不是由A的列向量張成的? 你看解空間是U,而AX=0這不就相當於正交嗎?所以A的列向量張成的空間不應該就是U的正交補嗎?那麼原因到底出
>>阅读原文<<
相關文章
1.
線性代數(五)向量空間——向量空間的基 維數 內積 基的規範正交化
2.
oracle 若是爲空則輸出0
3.
高等代數中的各種空間
4.
PHP正則表達式 /i, /s, /x,/u, /U, /A, /D, /S等介紹
5.
PHP正則表達式 /i, /s, /x,/u, /U, /A, /D, /S等模式修飾符
6.
線性代數之——正交向量與子空間
7.
MYSQL求解,,,A+B,若是有一個不爲空,就取不爲空的那個,都不爲空,就取和,若是兩個都
8.
高等代數筆記2:向量空間與矩陣論
9.
8正交向量與子空間
10.
mysql 讓空值用0補充的函數IFNULL(a,0)
更多相關文章...
•
Hibernate的運行流程
-
Hibernate教程
•
Redis悲觀鎖解決高併發搶紅包的問題
-
紅包項目實戰
•
互聯網組織的未來:剖析GitHub員工的任性之源
•
漫談MySQL的鎖機制
相關標籤/搜索
空的
是的
爲的
行的
高的
題的
u+0
人的行爲
正交的 React 組件
應用數學
NoSQL教程
Spring教程
Redis教程
代碼格式化
數據傳輸
數據庫
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
Duang!超快Wi-Fi來襲
2.
機器學習-補充03 神經網絡之**函數(Activation Function)
3.
git上開源maven項目部署 多module maven項目(多module maven+redis+tomcat+mysql)後臺部署流程學習記錄
4.
ecliple-tomcat部署maven項目方式之一
5.
eclipse新導入的項目經常可以看到「XX cannot be resolved to a type」的報錯信息
6.
Spark RDD的依賴於DAG的工作原理
7.
VMware安裝CentOS-8教程詳解
8.
YDOOK:Java 項目 Spring 項目導入基本四大 jar 包 導入依賴,怎樣在 IDEA 的項目結構中導入 jar 包 導入依賴
9.
簡單方法使得putty(windows10上)可以免密登錄樹莓派
10.
idea怎麼用本地maven
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
線性代數(五)向量空間——向量空間的基 維數 內積 基的規範正交化
2.
oracle 若是爲空則輸出0
3.
高等代數中的各種空間
4.
PHP正則表達式 /i, /s, /x,/u, /U, /A, /D, /S等介紹
5.
PHP正則表達式 /i, /s, /x,/u, /U, /A, /D, /S等模式修飾符
6.
線性代數之——正交向量與子空間
7.
MYSQL求解,,,A+B,若是有一個不爲空,就取不爲空的那個,都不爲空,就取和,若是兩個都
8.
高等代數筆記2:向量空間與矩陣論
9.
8正交向量與子空間
10.
mysql 讓空值用0補充的函數IFNULL(a,0)
>>更多相關文章<<