JavaShuo
欄目
標籤
Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks
時間 2020-12-30
原文
原文鏈接
理解 Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks 一、摘要 1.提出了基於U-Net的卷積網絡。 2.在BRaTS2015上實驗。 二、Introduction 1.基於U-Net提出了2D全卷積網絡。 2.使用dice loss 損失函數。 3
>>阅读原文<<
相關文章
1.
Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks_2017
2.
Automatic Brain Tumor Segmentation using Cascaded Anisotropic Convolutional Neural Networks
3.
Automatic skin lesion segmentation with fully convolutional-deconvolutional networks
4.
Brain tumor segmentation with Deep Neural Networks
5.
肝臟分割 Using Cascaded Fully Convolutional Neural Networks and 3D Conditional Random Fields
6.
Region-Based Convolutional Networks for Accurate Object Detection and Segmentation
7.
3D MRI brain tumor segmentation using autoencoder regularization
8.
R-FCN: Object Detection via Region-based Fully Convolutional Networks
9.
Fully Convolutional Adaptation Networks for Semantic Segmentation
10.
One-Pass Multi-task Convolutional Neural Networks for Efficient Brain Tumor Segmentation
更多相關文章...
•
W3C RDF and OWL 活動
-
W3C 教程
•
XSL-FO table-and-caption 對象
-
XSL-FO 教程
•
RxJava操作符(七)Conditional and Boolean
•
Flink 數據傳輸及反壓詳解
相關標籤/搜索
networks
based
segmentation
tumor
fully
convolutional
brain
detection
automatic
unet
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
JDK JRE JVM,JDK卸載與安裝
2.
Unity NavMeshComponents 學習小結
3.
Unity技術分享連載(64)|Shader Variant Collection|Material.SetPassFast
4.
爲什麼那麼多人用「ji32k7au4a83」作密碼?
5.
關於Vigenere爆0總結
6.
圖論算法之最小生成樹(Krim、Kruskal)
7.
最小生成樹 簡單入門
8.
POJ 3165 Traveling Trio 筆記
9.
你的快遞最遠去到哪裏呢
10.
雲徙探險中臺賽道:借道雲原生,尋找「最優路線」
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks_2017
2.
Automatic Brain Tumor Segmentation using Cascaded Anisotropic Convolutional Neural Networks
3.
Automatic skin lesion segmentation with fully convolutional-deconvolutional networks
4.
Brain tumor segmentation with Deep Neural Networks
5.
肝臟分割 Using Cascaded Fully Convolutional Neural Networks and 3D Conditional Random Fields
6.
Region-Based Convolutional Networks for Accurate Object Detection and Segmentation
7.
3D MRI brain tumor segmentation using autoencoder regularization
8.
R-FCN: Object Detection via Region-based Fully Convolutional Networks
9.
Fully Convolutional Adaptation Networks for Semantic Segmentation
10.
One-Pass Multi-task Convolutional Neural Networks for Efficient Brain Tumor Segmentation
>>更多相關文章<<