JavaShuo
欄目
標籤
Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks_2017
時間 2020-12-30
標籤
論文筆記
简体版
原文
原文鏈接
作者:Hao Dong , Guang Yang 等 訓練圖像被插值爲1*1*1,大小爲240×240×155,然後經過數據標準化(每套多模態MRI減去自己的均值,除以標準差). 腫瘤被分了4類,1.necrosis(壞死), 2.edema(水腫), 3.non-enhancing, 4.enhancing tumor.使用FLAIR圖像分割完整的腫瘤區域和除水腫之外的腫瘤,使用T1c(T1-w
>>阅读原文<<
相關文章
1.
Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks
2.
Automatic Brain Tumor Segmentation using Cascaded Anisotropic Convolutional Neural Networks
3.
Automatic skin lesion segmentation with fully convolutional-deconvolutional networks
4.
3D MRI brain tumor segmentation using autoencoder regularization
5.
肝臟分割 Using Cascaded Fully Convolutional Neural Networks and 3D Conditional Random Fields
6.
Brain tumor segmentation with Deep Neural Networks
7.
Region-Based Convolutional Networks for Accurate Object Detection and Segmentation
8.
Learning Contextual and Attentive Information for Brain Tumor Segmentation
9.
Multi-task Fully Convolutional Network for Brain Tumour Segmentation
10.
【論文閱讀筆記】Automatic Liver and Lesion Segmentation in CT Using Cascaded Fully Convolutional Neural Net
更多相關文章...
•
W3C RDF and OWL 活動
-
W3C 教程
•
XSL-FO table-and-caption 對象
-
XSL-FO 教程
•
RxJava操作符(七)Conditional and Boolean
•
Flink 數據傳輸及反壓詳解
相關標籤/搜索
based
segmentation
tumor
fully
convolutional
brain
detection
automatic
unet
using
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
springboot在一個項目中啓動多個核心啓動類
2.
Spring Boot日誌-3 ------>SLF4J與別的框架整合
3.
SpringMVC-Maven(一)
4.
idea全局設置
5.
將word選擇題轉換成Excel
6.
myeclipse工程中library 和 web-inf下lib的區別
7.
Java入門——第一個Hello Word
8.
在chrome安裝vue devtools(以及安裝過程中出現的錯誤)
9.
Jacob線上部署及多項目部署問題處理
10.
1.初識nginx
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks
2.
Automatic Brain Tumor Segmentation using Cascaded Anisotropic Convolutional Neural Networks
3.
Automatic skin lesion segmentation with fully convolutional-deconvolutional networks
4.
3D MRI brain tumor segmentation using autoencoder regularization
5.
肝臟分割 Using Cascaded Fully Convolutional Neural Networks and 3D Conditional Random Fields
6.
Brain tumor segmentation with Deep Neural Networks
7.
Region-Based Convolutional Networks for Accurate Object Detection and Segmentation
8.
Learning Contextual and Attentive Information for Brain Tumor Segmentation
9.
Multi-task Fully Convolutional Network for Brain Tumour Segmentation
10.
【論文閱讀筆記】Automatic Liver and Lesion Segmentation in CT Using Cascaded Fully Convolutional Neural Net
>>更多相關文章<<