本練習以<機器學習實戰>爲基礎, 重現書中代碼, 以達到熟悉算法應用爲目的python
(注:matlab的版本轉載自http://blog.csdn.net/llp1992/article/details/45114421 , 感謝原做者的辛勞付出)算法
1.梯度上升算法app
新建一個logRegres.py文件, 在文件中添加以下代碼:dom
from numpy import * #加載模塊 numpy def loadDataSet(): dataMat = []; labelMat = [] #加路徑的話要寫做:open('D:\\testSet.txt','r') 缺省爲只讀 fr = open('testSet.txt') #readlines()函數一次讀取整個文件,並自動將文本分拆成一個行的列表, #該列表支持python使用for...in...的結構進行處理 (一次只處理一行) for line in fr.readlines(): #strip()函數 刪除字符串中的首尾空格或製表符等 #split()函數 按照符號(製表符)進行分割 lineArr = line.strip().split() #每一行加入第零維 x0 = 1 dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])]) labelMat.append(int(lineArr[2])) return dataMat, labelMat def sigmoid(inX): #定義sigmoid函數 return 1.0/(1 + exp(-inX)) def gradAscent(dataMatIn, classLabels): dataMatrix = mat(dataMatIn) #轉換爲numpy內置的矩陣格式 labelMat = mat(classLabels).transpose() #transpose()是轉置的做用 m,n = shape(dataMatrix) #獲取矩陣的維數 alpha = 0.001 #設定步長 maxCycles = 500 #設定循環次數 weights = ones((n,1)) #初始化權值 for k in range(maxCycles): #heavy on matrix operations h = sigmoid(dataMatrix*weights) #logistic regression的hypothesis error = (labelMat - h) weights = weights + alpha * dataMatrix.transpose()* error #更新權值 return weights
在終端中輸入下面的命令:機器學習
>>> import logRegres >>> dataArr,labelMat = logRegres.loadDataSet() >>> weights = logRegres.gradAscent(dataArr, labelMat) #原書中漏掉了weights =
會獲得下面的結果, 這個是迭代500次後的結果:函數
matrix([[4.12414349],學習
[0.48007329],測試
[-0.6168482]])this
獲得權重後,就能夠把圖畫下來直觀的感覺下效果了:spa
在文本中添加以下的代碼:
def plotBestFit(weights): import matplotlib.pyplot as plt #把pyplot重命名爲plt, 方便之後使用 dataMat,labelMat=loadDataSet() dataArr = array(dataMat) n = shape(dataArr)[0] xcord1 = []; ycord1 = [] xcord2 = []; ycord2 = [] for i in range(n): if int(labelMat[i])== 1: #標籤是1的數據 xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2]) #第一維和第二維分別放入xcorde1和ycorde1這兩個list中 else: #標籤是0的數據 xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2]) #第一維和第二維分別放入xcorde2和ycorde2這兩個list中 fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(xcord1, ycord1, s=30, c='red', marker='s') #標籤爲1的數據標爲紅色 ax.scatter(xcord2, ycord2, s=30, c='green') #標籤爲0的數據標爲綠色 x = arange(-3.0, 3.0, 0.1) #其實這裏的x = x1, y = x2; 而x0 = 1 y = (-weights[0]-weights[1]*x)/weights[2] # 0 = weight[0]*x0 + weight[1]*x1 + weight[2]*x2 把分離超平面在二維畫出來 ax.plot(x, y) plt.xlabel('X1'); plt.ylabel('X2'); plt.show()
生成以下圖示的圖片:
下面是matlab版本的實現代碼:
function returnVals = sigmoid(inX) returnVals = 1.0 ./ (1.0 + exp(-inX)); end
上面這個是sigmoid函數, 下面的代碼會用到
function weight = gradAscend %% clc close all clear %% data = load('testSet.txt'); [row, col] = size(data); %獲取數據的行和列 dataMat = data(:, 1:col-1); %去除data的最後一列 dataMat = [ones(row,1) dataMat];%用列1代替 labelMat = data(:, col); %data矩陣的最後一列做爲label矩陣 alpha = 0.001; %步進 maxCycle = 500; %設置最大循環次數 weight = ones(col, 1); %初始化權值值 for i = 1:maxCycle h = sigmoid(dataMat * weight); %logistic迴歸的hypothesis error = labelMat - h; weight = weight + alpha * dataMat' * error; end figure scatter(dataMat(find(labelMat(:) == 0), 2), dataMat(find(labelMat(:) == 0), 3), 3); hold on scatter(dataMat(find(labelMat(:) == 1), 2), dataMat(find(labelMat(:) == 1), 3), 5); hold on x = -3:0.1:3; y = (-weight(1)-weight(2)*x)/weight(3); plot(x.y) hold off end
效果以下:
2. 隨機梯度上升
梯度上升算法在每次更新迴歸係數時須要遍歷這個數據集, 假若數據集規模較大時, 時間空間的複雜度就難以承受了, 一種新的辦法是每次只用一個樣本點更新迴歸係數, 這種方法稱爲隨機梯度上升.
在原文本中插入一下代碼:
def stocGradAscent0(dataMatrix, classLabels): m,n = shape(dataMatrix) alpha = 0.01 #設定步進值爲0.1 weights = ones(n) #初始化權值 for i in range(m): #每次只選取一個點進行權值的更新運算可節省很多時間 h = sigmoid(sum(dataMatrix[i]*weights)) error = classLabels[i] - h weights = weights + alpha * error * dataMatrix[i] return weights
在python命令行窗口輸入下述命令:
>>> reload(logRegres) >>> dataArr,labelMat=logRegres.loadDataSet() >>> weights=logRegres.stocGradAscent0(array(dataArr),labelMat) >>> logRegres.plotBestFit(weights)
獲得以下的圖形:
matlab版本的代碼以下:
function stocGradAscent %% % % Description : LogisticRegression using stocGradAsscent % Author : Liulongpo % Time:2015-4-18 10:57:25 % %% clc clear close all %% data = load('testSet.txt'); [row , col] = size(data); dataMat = [ones(row,1) data(:,1:col-1)]; alpha = 0.01; labelMat = data(:,col); weight = ones(col,1); for i = 1:row h = sigmoid(dataMat(i,:)*weight); error = labelMat(i) - h; weight = weight + alpha * error * dataMat(i,:)' end figure scatter(dataMat(find(labelMat(:)==0),2),dataMat(find(labelMat(:)==0),3),5); hold on scatter(dataMat(find(labelMat(:) == 1),2),dataMat(find(labelMat(:) == 1),3),5); hold on x = -3:0.1:3; y = -(weight(1)+weight(2)*x)/weight(3); plot(x,y) hold off
end
效果圖以下所示:
彷佛效果不太好, 由於訓練的次數比較少, 只一輪, 下面修改代碼, 並改進其它的一些問題:
def stocGradAscent1(dataMatrix, classLabels, numIter=150): #可本身設定更新的輪數,默認爲150 m,n = shape(dataMatrix) weights = ones(n) #初始化權值 for j in range(numIter): #第j輪 dataIndex = range(m) for i in range(m): #第j輪中的第i個數據 alpha = 4/(1.0+j+i)+0.0001 #alpha會隨着更新的次數增長而愈來愈小 randIndex = int(random.uniform(0,len(dataIndex)))#每次的i循環的randIndex的值都不一樣 h = sigmoid(sum(dataMatrix[randIndex]*weights)) error = classLabels[randIndex] - h weights = weights + alpha * error * dataMatrix[randIndex] del(dataIndex[randIndex]) return weights
一個重要的改進是alpha 的值再也不是一個固定的值, 而是會隨着更新的次數增長而愈來愈小, 但0.0001是它的下限.
還有一個改進是 每輪的更新不會按照既有的順序, 這樣能夠避免權值週期性的波動.
下面是150輪後的圖形:
能夠看到, 隨機梯度上升算法比梯度上升算法收斂的更快.
下面是matlab的版本:
function ImproveStocGradAscent %% clc clear close all %% data = load('testSet.txt'); [row , col] = size(data); dataMat = [ones(row,1) data(:,1:col-1)]; numIter = 150; labelMat = data(:,col); weight = ones(col,1); for j = 1: numIter for i = 1:row alpha = 4/(1.0+j+i) + 0.0001; randIndex = randi(row); %產生1到100間的隨機數 h = sigmoid(dataMat(randIndex,:)*weight); error = labelMat(randIndex) - h; weight = weight + alpha * error * dataMat(randIndex,:)'; end end figure scatter(dataMat(find(labelMat(:)==0),2),dataMat(find(labelMat(:)==0),3),5); hold on scatter(dataMat(find(labelMat(:) == 1),2),dataMat(find(labelMat(:) == 1),3),5); hold on x = -3:0.1:3; y = -(weight(1)+weight(2)*x)/weight(3); plot(x,y) hold off end
效果以下:
3. 一個實際的例子: 預測病馬是否可以存活
這裏每一個病馬有21個特徵:
def classifyVector(inX, weights): #預測函數 prob = sigmoid(sum(inX*weights)) if prob > 0.5: return 1.0 else: return 0.0 def colicTest(): frTrain = open('horseColicTraining.txt'); frTest = open('horseColicTest.txt') trainingSet = []; trainingLabels = [] for line in frTrain.readlines(): #訓練集有299行 currLine = line.strip().split('\t') #每一行的currLine有22個元素 lineArr =[] for i in range(21): #把currLine的前21個元素放入一個list中去 lineArr.append(float(currLine[i])) trainingSet.append(lineArr) # 再把這個list放入一個更大的list中去 trainingLabels.append(float(currLine[21])) #數據集的最後一列是標籤列 trainWeights = stocGradAscent1(array(trainingSet), trainingLabels, 1000) #訓練1000輪 errorCount = 0; numTestVec = 0.0 for line in frTest.readlines(): #測試集有67個數據 numTestVec += 1.0 #從0開始, 每測試一個,數目加1 currLine = line.strip().split('\t') lineArr =[] for i in range(21): lineArr.append(float(currLine[i])) #生成每一個測試數據的list if int(classifyVector(array(lineArr), trainWeights))!= int(currLine[21]): #若是預測值與真實值不等 errorCount += 1 #則錯誤加1 errorRate = (float(errorCount)/numTestVec) print "the error rate of this test is: %f" % errorRate return errorRate def multiTest(): numTests = 10; errorSum=0.0 for k in range(numTests): #測試10次, 求平均 errorSum += colicTest() print "after %d iterations the average error rate is: %f" % (numTests, errorSum/float(numTests))
運行結果以下:
>>> logRegres.multiTest()logRegres.py:19: RuntimeWarning: overflow encountered in exp return 1.0/(1+exp(-inX))the error rate of this test is: 0.328358the error rate of this test is: 0.268657the error rate of this test is: 0.313433the error rate of this test is: 0.388060the error rate of this test is: 0.268657the error rate of this test is: 0.358209the error rate of this test is: 0.343284the error rate of this test is: 0.268657the error rate of this test is: 0.432836the error rate of this test is: 0.313433after 10 iterations the average error rate is: 0.328358