JavaShuo
欄目
標籤
Rethinking Performance Estimation in Neural Arc
時間 2021-01-14
標籤
論文筆記
深度學習
简体版
原文
原文鏈接
Rethinking Performance Estimation in Neural Architecture Search 1、簡介 **解決的問題:**以往訓練一個性能估計器,網絡需要大量的計算資源(需要訓練大量的網絡)。爲了高效的估計網絡的性能,提出一種MIP方法(Minimum Importance Pruning)。 另外,以前的方法無法證明訓練的子網絡結構和從頭訓練的網絡性能具有
>>阅读原文<<
相關文章
1.
Rethinking on Multi-Stage Networks for Human Pose Estimation
2.
Synthesizer: Rethinking Self-Attention in Transformer Models
3.
PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes—2017(筆記)
4.
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks(2019)
5.
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
6.
[ICML19]EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
7.
#Paper Reading# EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
8.
Empirical Analysis of Beam Search Performance Degradation in Neural Sequence Models
9.
Understanding deep learning requires rethinking generalization
10.
LiteFlowNet: A Lightweight Convolutional Neural Network for Optical Flow Estimation
更多相關文章...
•
SQL IN 操作符
-
SQL 教程
•
Swift for-in 循環
-
Swift 教程
•
C# 中 foreach 遍歷的用法
•
Kotlin學習(一)基本語法
相關標籤/搜索
arc
rethinking
performance
estimation
neural
method...in
in+exists
in&&exists
for...in
for..in
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
android 以太網和wifi共存
2.
沒那麼神祕,三分鐘學會人工智能
3.
k8s 如何 Failover?- 每天5分鐘玩轉 Docker 容器技術(127)
4.
安裝mysql時一直卡在starting the server這一位置,解決方案
5.
秋招總結指南之「性能調優」:MySQL+Tomcat+JVM,還怕面試官的轟炸?
6.
布隆過濾器瞭解
7.
深入lambda表達式,從入門到放棄
8.
中間件-Nginx從入門到放棄。
9.
BAT必備500道面試題:設計模式+開源框架+併發編程+微服務等免費領取!
10.
求職面試寶典:從面試官的角度,給你分享一些面試經驗
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Rethinking on Multi-Stage Networks for Human Pose Estimation
2.
Synthesizer: Rethinking Self-Attention in Transformer Models
3.
PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes—2017(筆記)
4.
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks(2019)
5.
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
6.
[ICML19]EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
7.
#Paper Reading# EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
8.
Empirical Analysis of Beam Search Performance Degradation in Neural Sequence Models
9.
Understanding deep learning requires rethinking generalization
10.
LiteFlowNet: A Lightweight Convolutional Neural Network for Optical Flow Estimation
>>更多相關文章<<