機器學習--Adaboost 算法的原理與推導

1 Adaboost的原理 1.1 Adaboost是什麼 AdaBoost,是英文"Adaptive Boosting"(自適應增強)的縮寫,由Yoav Freund和Robert Schapire在1995年提出。它的自適應在於:前一個基本分類器分錯的樣本會得到加強,加權後的全體樣本再次被用來訓練下一個基本分類器。同時,在每一輪中加入一個新的弱分類器,直到達到某個預定的足夠小的錯誤率或達到預先
相關文章
相關標籤/搜索