數論筆記

排列組合

1.加法原理

完成一件事情,有n類作法,每一類對應的是\(m_{1},m_{2},m_{3},\ldots m_{n}\)。那麼完成這些事情總共有\(m_{1}+m_{2}+m_{3}+\ldots m_{n}\)種作法。數組

2.乘法原理

完成一件事情,分紅n步,每一步對應的是\(m_{1},m_{2},m_{3},\ldots m_{n}\)。那麼完成這些事情總共有\(m_{1}*m_{2}*m_{3}*\ldots m_{n}\)種作法。函數

3.加法原理和乘法原理的區別

加法原理只是分了若干類,可是之間是點到點的。ui

4.排列和組合的區別

有順序的問題稱爲排列問題,沒順序的問題稱爲組合問題。spa

5.問題類型

組數問題
抽取問題(分配問題)
染色問題(塗色問題)
種植問題ci

6.排列數

定義:

從n個不一樣元素中,取出m\((m\leq n)\)個元素,全部不一樣排列的個數叫作從n個元素中取出m個不一樣元素的排列數。記爲\(A^{m}_{n}\)
\(A^{m}_{n}\)\(=n\left( n-1\right) \left( n-2\right) \ldots \left[ n-\left( m-1\right) \right]\)
\(=n\left( n-1\right) \left( n-2\right) \ldots \left( n-m+1\right)\)
\(=\dfrac {n!}{\left( n-m\right) !}\)
\(0!=1\)pm2

排列

從n個元素中取出m個元素進行排隊,記做\(A^m_{n}\)\(=\dfrac {n!}{\left( n-m\right) !}\)io

全排列:

\(A^{n}_{n}\)\(=n\left( n-1\right) \left( n-2\right) \ldots\left( n-n+1\right)\)
\(=n\left( n-1\right) \left( n-2\right) \ldots 1\)
\(=n!\)ast

問題類型:

無限制條件
相鄰不相鄰
定序
元素的存在性
數字排列整除(尤爲注意元素0的處理)class

組合

從n個元素中取出m個元素
\(C^m_{n}=\dfrac{A^m_{n}}{m!}\)
\(C^m_{n}=\dfrac{n!}{m!(n-m)!}\)
\(x_{1}+x_{2}+···+x_{n}=r\)\(C^r_{n+r-1}\)個非負整數解原理

n元集的可重複排列

\(S=\{\infty a_{1},\infty a_{2},···,\infty a_{k}\}\)
從s中選r個元素,有\(k^{r}\)種排列
\(S=\{n_{1}a_{1},n_{2}a_{2},···,n_{k}a_{k}\}\)
\(n=n_{1}+n_{2}+n_{k}\)
\(\dfrac{n!}{n_{1}!n_{2}!···n_{k}!}\)

圓排列

從n個不一樣元素中,選m個元素排在一個圓周上
個數:\(\dfrac{A^m_{n}}{m}\)
所有圓排列(圓排列的全排):\(\dfrac {A^n_{n}}{n}=(n-1)!\)

項鍊排列

n粒
\[ D(n)= \begin{cases} 1       n=1或2\\ \dfrac{(n-1)!}{2}   n\geq3 \end{cases} \]

數論

整除

若是\(a=bc,b\neq0\)
b可以整除a:\(b\mid a\)
b不可以整除a:\(b\nmid a\)

1.性質

(1)\(b\mid c,c\mid a\Rightarrow b\mid a\)
(2)\(b\mid a,b\mid c\Rightarrow b\mid (\lambda a\pm \mu c)\)
(3)若\(b\mid a\Rightarrow a=0\)\(\left| a\right| \geq \left| b\right|\)
(4)帶餘除法:
\(a=bq+r,b>0,0\leq r<b\)
\(r=0,1,2,···,b-1\)
(5)\(n\in N^{\ast }\)
\(x^n-y^n=(x-y)(x^{n-1}+x^{n-2}y+x^{n-3}y^2+···+y^{n-1})\)
(6)n爲正奇數時
\(x^n+y^n=(x+y)[x^{n-1}-x^{n-2}y+x^{n-3}y^2-···-(-1)^ny^{n-1}]\)

2.

對任意整數n,設\(S(n)\)爲其十進制的數碼之和
\(9\mid n\Leftrightarrow 9\mid S(n)\)
證:假設\(n=a_{k}a_{k-1}···a_{0}\)
\[S(n)=\sum ^k_{n=0}a_{n}=a_{0}+a_{1}+···+a_{k}\]
\(9\mid n,9\mid n-S(n)\Rightarrow 9\mid S(n)\)
\(n=a_{k}\times 10^k+a_{k-1}\times 10^{k-1}+···+a_{0}\)
\(S(n)=a_{k}+a_{k-1}+···+a_{0}\)
\(x^n-y^n=\)\(n-S(n)\)
\(=a_{k}(10^k-1)+a_{k-1}(10^{k-1}-1)+···+a_{1}(10-1)\)
\(=a_{k}(10-1)(···)+a_{k-1}(10-1)(···)+···+a_{1}(10-1)\)
\(9\mid n-S(n),9\mid n\Rightarrow 9\mid S(n)\)
同理
\(9\mid n-S(n),9\mid S(n)\Rightarrow 9\mid n\)

3.

設k是個\(\geq 1\)的奇數
證實:對任意正整數n,數\(1^k+2^k+···+n^k\)
不能被\(n+2\)整除
證:\(n=1,1^k+···+n^k=1\)
\(n+2=3,3\nmid 1\)
\(n=2,1^k+2^k\)
\(n+2=4,4\nmid (1^k+2^k)\)
\(n\geq 3\)
\(S=1^k+2^k+···+n^k\)
\(S=(n+2)m+(n+1)\)
\(S=n^k+···+2^k+1^k\)
\(2S=2+(n+2)(···)+(n-1+3)(···)\)
\(x^n+y^n=(x+y)(···)\)
\(=2+(n+2)(···)\)
\((n+2)\mid S\)\((n+2)\mid 2S\),則\((n+2)\mid 2\)

最大公約數與最小公倍數

最小公倍數:\([a,b]\)
最大公約數:\((a,b)\)
互素:\((a,b)=1\)

1.裴蜀定理

設a,b是不全爲0的整數,則存在x,y爲整數
使得\(xa+yb=(a,b)\)
    \(\Downarrow\)

2.

\(xa+yb=1\Rightarrow(a,b)=1\)

3.

\(m\mid a,m\mid b\)
\(m\mid (a,b)=xa+by\)

4.

\(m>0\)
\((ma,mb)=m(a,b)\)

5.

\((a,b)=d\)
\((\dfrac{a}{d},\dfrac{b}{d})=1\)

6.

\((a,m)=1,(b,m)=1\)
\((ab,m)=1\Rightarrow(a^k,m)=1\)
\(a=p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}}···p_{k}^{\alpha_{k}}\)
\(m=l_{1}^{\beta_{1}}l_{2}^{\beta_{2}}···l_{k}^{\beta_{k}}\)
\((m,a)=1,l_{i}\nmid a\)
\(a^k\)同理
\(b=\gamma_{1}^{z_{1}}···\gamma_{k}^{z_{k}}\)
\((b,m)=1,l_{i}\nmid b\)
\((a^k,m)=1,(b^k,m)=1,(a^k,m^k)=1,(b^k,m^k)=1\)

7.

\(b\mid ac,\)\((a,b)=1\)
\(b\mid c\)

8.

設正整數a,b之積爲一個整數的k次冪
\((a,b)=1\),則a,b都是整數的k次冪

素數的惟一分解定理

1.

大於1的整數必有素約數

2.

設p是素數,n是任意一個整數
\(\Rightarrow p\mid n\)\((p,n)=1\)

3.

設p是素數,a,b爲整數,若\(p\mid ab\)
則a,b中至少有一個能被p整除

4.

素數有無窮多個
證實:假定正整數中,只有有限個素數
\(p_{1}<p_{2}<···<p_{k}\)
\(N=p_{1}p_{2}···p_{k}+1\)
\(N>1\)
\(\therefore N\)必定有一個質因數\(p,p<p_{i}\)
\(p\mid p_{1}···p_{k}\)

5.(惟一分解定理)

每一個大於1的正整數
\(n=p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}}···p_{k}^{\alpha_{k}}\)
    \(\Uparrow\)

6.

\(p_{1}^{\beta_{1}}p_{2}^{\beta_{2}}···p_{k}^{\beta_{k}}\)(約數)
\(0\leq \beta_{i} \leq \alpha_{i}\)

7.

\(p^\alpha\parallel m\)(恰能整除)
\(p^\alpha \mid m\)\(p^{\alpha+1}\nmid m\)
\(p^\alpha \parallel n!\)
\[\alpha=\sum^\infty_{k=1}[\dfrac{n}{p^k}]\](取整函數,也稱做高斯函數)

8.

設a是任一大於1的整數,則a的除1外的最小正uors因數q是一質數,而且當a爲合數時
\(q\leq \sqrt{a}\)
記:假定q不是質數,q除了1和自己外
\(q_{1}\mid q\)
\(\therefore 1< q_{1}< q,a_{1}\mid q,q\mid a\)
\(\therefore q_{1}\mid a\)
當a爲合數時,\(a=a_{1}q,\)\(a_{1}>1\)
\(\therefore a=a_{1}q>q·q\)
\(\therefore q\leq\sqrt{a}\)

9.賈憲數

\(\dfrac{n!}{k!(n-k)!}\)是整數\((0<k<n)\)
高斯函數的問題:
\([x]\)x的取整部分,\(\{x\}\)x的小數部分
\(x=[x]+\{x\}\)
(1)\([x]\leq x<[x]+1\)
(2)\(x-1<[x]\leq x\)
(3)\([n+x]=n+[x]\)
(4)\([x]+[y]\leq [x+y]\)
\(=[[x]+\{x\}+[y]+\{y\}]\)
\(=[[x]+[y]+\{x\}+\{y\}]\)
\(=[x]+[y]+[\{x\}+\{y\}]\)

二元一次不定方程

定理1

設二元一次不定方程\(ax+by=c\)(a,b,c都是整數,且a,b不一樣爲0)
有一整數解\(x_{0},y_{0}\)
\((a,b)=d,a=a_{1}d,b=b_{1}d\)
\[ \begin{cases} x=x_{0}-b_{1}t \\ y=y_{0}+a_{1}t  t=0,\pm1,\pm2··· \end{cases} \]
\(ax_{0}+by_{0}=c\)
\(a(x_{0}-b_{1}t)+b(y_{0}+a_{1}t)\)
\(=ax_{0}-ab_{1}t+by_{0}+ba_{1}t\)
\(=ax_{0}+by_{0}-a_{1}b_{1}dt+b_{1}da_{1}t=0\)
\(=ax_{0}+by_{0}=c\)

定理2

\(ax+by=c\)有解
     \(\searrow\)
\((a,b)=d,d\mid c\)
\(ap+bq=d\)
\(ax+by=(a,b)\)
\(d\mid c,c=md\)
\(a(mp)+b(mq)=md=c\)
\(d\mid (ax+by),\)那麼\(d\mid c\)
\((a,b)\mid c\),就有解

公式

若a,b是任意兩個正整數
\(Q_{k}a-P_{k}b=(-1)^{k-1}r_{k},k=1···n\)
其中\(p_{0}=1,p_{1}=q_{1},p_{k}=q_{k}p_{k-1}+p_{k-2}\)
\(Q_{0}=0,Q_{1}=1,Q_{k}=q_{k}Q_{k-1}+Q_{k-2}\)
\(k=2···n\)
\(ax+by=c\)
\(x=(-1)^{n-1}Q_{n},y=(-1)^np_{n }\)
\[ \begin{cases} a=bq_{1}+r_{1},0<r_{1}<b \\ b=r_{1}q_{2}+r_{2},0<r_{2}<r_{1}\\ r_{k-1}=r_{k}q_{k+1}+r_{k+1},0<r_{k+1}<r_{k}\\ r_{n+1}=r_{n}q_{n+1} \end{cases} \]

同餘

1.

\(a\equiv b (mod m)\)
\(b\equiv a (mod m)\)

2.

\(a\equiv b (mod m),b\equiv c (mod m)\)
\(a\equiv c (mod m)\)

3.

\(a_{1}\equiv b_{1} (mod m),a_{2}\equiv b_{2} (mod m)\)
\(a_{1}+a_{2}\equiv b_{1}+b_{2} (mod m)\)

4.

\(a+b\equiv c (mod m)\)
\(a\equiv c-b (mod m)\)
\(a=k_{1}m+t_{1},b=k_{2}m+t_{2}\)
\(a+b=(k_{1}+k_{2})m+(t_{1}+t_{2})\)
那麼\(c\equiv (t_{1}+t_{2})\)
\(c=km+(t_{1}+t_{2}),b=k_{2}m+t_{2}\)
\(c-b=(k-k_{2})m+t_{1}\)

5.

\(a\equiv b (mod m)\)\(a=a_{1}d,b=b_{1}d,(d,m)=1\)
 \(\Downarrow\)       則\(a_{1}\equiv b_{1} (mod m)\)
\(a-b\equiv 0 (mod m)\)
\(a_{1}d-b_{1}d\equiv 0 (mod m)\)
\(d(a_{1}-b_{1})\equiv 0 (mod m)\)
\(m\mid d(a_{1}-b_{1})\)
那麼\((m,d)=1,m\mid (a_{1}-b_{1})\)
\(a_{1}\equiv b_{1} (mod m)\)

6.

\(a\equiv b (mod m),k>0\)
\(a_{k}\equiv b_{k} (mod m_{k})\)

7.

\(a\equiv b (mod m)\),d是a,b及m的任一正因數
\(\dfrac{a}{d}\equiv \dfrac{b}{d} (mod \dfrac{m}{d})\)

8.

\(a\equiv b (mod m_{i}),i=1,2,···,k\)
\(a\equiv b (mod [m_{1},m_{2},···,m_{k}])\)

9.

\(a\equiv b (mod m),d\mid m,d>0\)
\(a\equiv b (mod d)\)

10.

\(a\equiv b (mod m)\)
\((a,m)=(b,m)\)
若d整除m及a,b二數之一
則d必整除a,b的另外一個
\(m\mid (a-b),(a,m)=d\)
\[ \begin{cases} d\mid (a-b)\\ d\mid a \end{cases} \]
\[\Downarrow\]
\[d\mid b\]

應用

整除問題
求餘數與末位數問題
解不定方程
進位制問題
平方數問題

平方數小性質

(1)平方數的末兩位
偶數0 偶數1 偶數4 偶數9 25 奇數6
(2)奇數的平方的十位數爲偶數
(3)把平方數的各位數碼相加,若是所得不是一位數,再把這些數碼相加,直到一位數爲止,這個一位數只能是0,1,4,7,9

同餘式

一元n次同餘式:
\(f(x)=a_{n}x^n+a_{n-1}x^{n-1}+···+a_{1}x+a_{0}\equiv 0 (mod m)\) 
其中\(m\nmid a_{n},a_{i}\)
\(f(c)\equiv 0 (mod m)\)
c就叫作同餘式的根或解

定理1

\(ax\equiv b (mod m)\)
如有一個解\(x_{0}\),則b有一類解\(x\equiv x_{0} (mod m)\)
\(ax_{0}\equiv b (mod m)\)
\(x\equiv km+x_{0}\)
\(akm+ax_{0}\equiv ax_{0}\)

定理2

\((a,m)=1\)
\(ax\equiv b (mod m)\)
只有一個解
\((a,m)=1,0\)
\(a,2a,···,(m-1)a\)是m的一個徹底剩餘系
其中,有且只有一個\(ra\equiv b (mod m)\)
\(\therefore x\equiv r (mod m)\)是惟一解

定理3

\((a,m)=1\)
\(ax\equiv b (mod m)\)
\(x=ba^{\phi(m)-1} (mod m)\)

定理4

\((a,m)=d>1,d\nmid b\)
\(ax\equiv b (mod m)\)無解

定理5

\((a,m)=d>1,d\mid b\)
則有d個解

模爲素數的二次同餘方程

定義:\(p>2\)的素數,d爲整數,\(p\nmid d\)
若是同餘方程\(x^{2}\equiv d (mod p)\)有解
則d是模p的二次剩餘
若無解,則稱d是模p的二次非剩餘

剩餘類及徹底剩餘類

1.

若m是一個給定的正整數,則所有整數能夠分紅m個集合。記做\(k_{0},k_{1},···,k_{m-1}\)
其中\(k_{r}\)\(mq+r\)的形式
\(k_{0} k_{1} k_{2} ··· k_{m-1}\)
每個叫模m的剩餘類
從剩餘類中隨便挑一個
\(a_{0} a_{1} a_{2} ··· a_{m-1}\)
叫作它的一個徹底剩餘系
總結:每一類叫剩餘類,從每一類當中挑一個數組成的m-1個數叫作它的徹底剩餘系
絕對值最小徹底剩餘系:
 m是偶數:
 \(-\dfrac{m}{2},-\dfrac{m}{2}+1,···,-1,0,1,···,\dfrac{m}{2}-1\)
 m是奇數:
 \(-\dfrac{m-1}{2},···,-1,0,1,···,\dfrac{m-1}{2}\)
最小非負徹底剩餘系:
\(0,1,···,m-1\)

歐拉函數

\(\phi()\)爲歐拉函數
\(\phi(n)\):n的簡化剩餘系的個數
\(\phi(n)=n(1-\dfrac{1}{p_{1}})(1-\dfrac{1}{p_{2}})(1-\dfrac{1}{p_{3}})···(1-\dfrac{1}{p_{k}})\)

歐拉定理

若(a,m)=1,則\(a^{\phi (m)}\equiv 1 (mod m)\)

歐拉函數

\((a,b)=1\)\(\phi(ab)=\phi(a)\phi(b)\)
\(ab=ab(1-\dfrac{1}{p_{1}})(1-\dfrac{1}{p_{2}})(1-\dfrac{1}{p_{3}})···(1-\dfrac{1}{p_{k}})(1-\dfrac{1}{m_{1}})(1-\dfrac{1}{m_{2}})(1-\dfrac{1}{m_{3}})···(1-\dfrac{1}{m_{k}})\)
\(=\phi(a)\phi(b)\)

費馬小定理

歐拉定理特殊化:
若m爲素數,\(\phi(m)=m-1\)
\(\therefore a^{m-1}\equiv 1 (mod m)\)
若p爲素數,\(a^{p-1}\equiv 1 (mod p)\)

威爾遜定理

設p是素數,則
\((p-1)!+1\equiv 0 (mod p)\)

威爾遜定理的逆定理

\((p-1)!\equiv -1 (mod p)\),則p爲素數

二項式定理

\[(x+y)^n=\sum^n_{k=0}C^{k}_{n}x^{k}y^{n-k}    n\in N^{*}\]

牛頓二項式定理

\[(x+y)^\alpha=x^{\alpha}+C^{1}_{\alpha}x^{\alpha-1}y+C^{2}_{\alpha}x^{\alpha-2}y^2+···    \alpha\in R\]
\[=\sum^{\infty}_{i=0}C^{i}_{\alpha}x^{\alpha -i}y^i\]
\(C^{i}_{\alpha}=\dfrac{\alpha(\alpha-1)···(\alpha-i+1)}{i!}\)

二項式展開

\((a+b)^n=C^0_{n}a^n+C^1_{n}a^{n-1}b+C^2_{n}a^{n-2}b^2+···+C^n_{n}b^n\)

中國剩餘定理

定理1

\(k\geq 2\),且\(m_{1},m_{2},···,m_{k}\)是兩兩互素的
\(M=m_{1}m_{2}···m_{k}\)
\(=m_{1}M_{1}=m_{2}M_{2}=···=m_{k}M_{k}\)
\[ \begin{cases} x_{1}\equiv b_{1} (mod m_{1})\\ x_{2}\equiv b_{2} (mod m_{2})    ①\\ ···\\ x_{k}\equiv b_{k} (mod m_{k}) \end{cases} \]
的正整數解是
\(x\equiv b_{1}M'_{1}M_{1}+b_{2}M'_{2}M_{2}+···+b_{k}M'_{k}M_{k} (mod M) ②\)
\(M'_{i}\)是知足同餘式\(M'_{i}M_{i}\equiv 1 (mod m_{i})\)的正整數解
證:
\(\because m_{1},m_{2},···,m_{k}\)兩兩互素,且\(M_{i}=\dfrac{M}{m_{i}}\)
\(\therefore(M_{1},m_{1})=(M_{2},m_{2})=···=(M_{k},m_{k})=1\)
\(\therefore\)存在兩正整數\(M'_{i},n_{i}\)使得\(M'_{i}M_{i}+n_{i}m_{i}=1\)
\(\therefore\)找到一個\(M'_{i}\)使得
\(M'_{i}M_{i}\equiv 1 (mod m_{i}) i=1,2,···,k ③\)
另外一方面\(i\neq j\)\(m_{i}\mid M_{j}\)
\(\therefore b_{j}M'_{j}M_{j}\equiv 0 (mod  m_{i}) ④\)
由式\(③,④\)當即獲得
\(b_{1}M'_{1}M_{1}+···+b_{k}M'_{k}M_{k}\equiv b_{i}M'_{i}M_{i}\equiv b_{i} (mod m_{i}) i=1,2,···,k ⑤\)
\(\therefore ②\)式是\(①\)式的解
最後證實式\(①\)是有惟一解,若是y亦是式\(①\)的解
那麼\(x\equiv b_{i}\equiv y (mod m_{i}) (i=1,2,···,k)\)
\(m_{i}\mid (x-y)\)因爲\(i\neq j\)時,\((m_{i},m_{j})=1\)
由整除的性質得\(m_{1},m_{2},···,m_{k}\mid x-y\)
\(\therefore x\equiv y (mod M)\)

定理2

\(m=p^{\alpha_{1}}_{1}p^{\alpha_{2}}_{2}···p^{\alpha_{k}}_{k}\)是模m的標準分解式
\(x\equiv a (mod m) ⑥\)
與同餘式組
\[ \begin{cases} x\equiv a (mod p^{\alpha_{1}}_{1})\\ ···               ⑦\\ x\equiv a (mod p^{\alpha_{k}}_{k}) \end{cases} \]

legender符號

\(p>2\)定義整變數d的函數
\[ \dfrac {d}{p}= \begin{cases} 1   當d是模p的二次剩餘\\ -1  當d是模p的二次非剩餘\\ 0   當p\mid d \end{cases} \]

性質:

(1)\((\dfrac{d}{p})=(\dfrac{p+d}{p})\)
(2)\((\dfrac{d}{p})\equiv d^{\dfrac{-p-1}{2}} (mod p)\)
(3)\((\dfrac{dc}{p})=(\dfrac{d}{p})(\dfrac{c}{p})\)
極性:\((ab)^x=a^xb^x\)
\(f(ab)=f(a)f(b)\)
(4)當\(p\nmid d\)
\((\dfrac{d^2}{p})=1\)
(5)\((\dfrac{1}{p})=1\)
\((\dfrac{-1}{p})=(-1)^{\dfrac{p-1}{2}}\)
\(x^2\equiv d (mod p)\)
\((\dfrac{d}{p})=1\)

組合恆等式

(1)\(C^{n}_{m}=C^{m-n}_{m}\)
(2)\(C^{n}_{m}=C^{n}_{m-1}+C^{n-1}_{m-1}\)
(3)\(C^l_{n}C^r_{l}=C^r_{n}C^{l-r}_{n-r}\)
(4)\(C^{r}_{r}+C^r_{r+1}+···+C^r_{n}=C^{r+1}_{n+1}\)
(5)\(kC^{k}_{n}=nC^{k-1}_{n-1}\)

泰勒展開

\(e^x=1+\dfrac{1}{1!}x+\dfrac{1}{2!}x^2+\dfrac{1}{3!}x^3+···+\dfrac{x^n}{n!}+···\)
\(ln(1+x)=x-\dfrac{1}{2}x^2+\dfrac{1}{3}x^3-\dfrac{1}{4}x^4···(-1)^{n+1}\dfrac {x^n}{n}+···\)
\(sinx=x-\dfrac{1}{3!}x^3+\dfrac{1}{5!}x^5-\dfrac{1}{7!}x^7+···\dfrac{(-1)^nx^{2n+1}}{(2n+1)!}···\)
\(cosx=1-\dfrac{x^2}{2!}+\dfrac{x^4}{4!}-\dfrac{x^6}{6!}···\dfrac{(-1)^nx^{2n}}{(2n)!}+···\)
\(\dfrac{1}{1-x}=1+x+···+x^n+···\)
\(\dfrac{1}{(1-x)^2}=1+2x+3x^2+···+nx^{n-1}+···\)

母函數

定義

對於序列\(c_{0}c_{1}c_{2}···\)
\(G(x)=c_{0}+c_{1}x+c_{2}x^2+···\)
\(G(x)\)就稱做\(c_{0}c_{1}c_{2}···\)的母函數

例子:Fibonacci序列

\(F_{n}=F_{n-1}+F_{n-2}\)
\(F_{1}=F_{2}=1\)
\(F_{0}=0\)
\(G(x)=F_{1}x+F_{2}x^2+···+F_{n}x^n+···\)
\(G(x)-x^2-x=G(x)x^2+(G(x)-x)x\)
\(G(x)=\dfrac{x}{1-x-x^2}\)
\(1-x-x^2=(1-\dfrac{1-\sqrt{5}}{2}x)(a-\dfrac{1+\sqrt{5}}{2}x)\)
\(\dfrac{x}{1-x-x^2}\)
  \(\Downarrow\)
\(\dfrac{A}{1-\dfrac{1-\sqrt{5}}{2}x}+\dfrac{B}{1-\dfrac{1+\sqrt{5}}{2}x}\)
\(A=\dfrac{1}{\sqrt{5}}  B=-\dfrac{1}{\sqrt{5}}\)
\(\dfrac{1-\sqrt{5}}{2}=\alpha,\dfrac{1+\sqrt{5}}{2}=\beta\)
\(\dfrac{1}{\sqrt{5}}(\dfrac{1}{1-\alpha x}-\dfrac{1}{1-\beta x})\)
\(\because \dfrac{1}{1-x}=1+x+x^2+···\)
\(\dfrac{1}{1-\alpha x}=1+\alpha x+(\alpha x)^2+(\alpha x)^3+···\)
\(\dfrac{1}{1-\beta x}=1+\beta x+\beta^2x^2+\beta^3x^3+···\)
\(G(x)=\dfrac{1}{\sqrt{5}}[(\alpha -\beta)x+(\alpha^2-\beta^2)x^2+···+(\alpha^n-\beta^n)x^n+···]\)
\(=F_{1}x+F_{2}x^2+F_{3}x^3+···+F_{n}x^n+···\)
\(F_{n}=\dfrac{1}{\sqrt{5}}(\alpha^n-\beta{n})\)

相關文章
相關標籤/搜索