EM(最大指望)算法推導、GMM的應用與代碼實現

  EM算法是一種迭代算法,用於含有隱變量的機率模型參數的極大似然估計。html

使用EM算法的緣由

  首先舉李航老師《統計學習方法》中的例子來講明爲何要用EM算法估計含有隱變量的機率模型參數。算法

  假設有三枚硬幣,分別記做A, B, C。這些硬幣正面出現的機率分別是$\pi,p,q$。進行以下擲硬幣試驗:先擲硬幣A,根據其結果選出硬幣B或C,正面選硬幣B,反面邊硬幣C;而後擲選出的硬幣,擲硬幣的結果出現正面記做1,反面記做0;獨立地重複$n$次試驗,觀測結果爲$\{y_1,y_2,...,y_n\}$。問三硬幣出現正面的機率。dom

  三硬幣模型(也就是第二枚硬幣正反面的機率)能夠寫做函數

$ \begin{aligned} &P(y|\pi,p,q) \\ =&\sum\limits_z P(y,z|\pi,p,q)\\ =&\sum\limits_z P(y|z,\pi,p,q)P(z|\pi,p,q)\\ =&\pi p^y(1-p)^{1-y}+(1-\pi)q^y(1-q)^{1-y} \end{aligned} $學習

  其中$z$表示硬幣A的結果,也就是前面說的隱變量。一般咱們直接使用極大似然估計,即最大化似然函數優化

$ \begin{aligned} &\max\limits_{\pi,p,q}\prod\limits_{i=1}^n P(y_i|\pi,p,q) \\ =&\max\limits_{\pi,p,q}\prod\limits_{i=1}^n[\pi p^{y_i}(1-p)^{1-y_i}+(1-\pi)q^{y_i}(1-q)^{1-y_i}]\\ =&\max\limits_{\pi,p,q}\sum\limits_{i=1}^n\log[\pi p^{y_i}(1-p)^{1-y_i}+(1-\pi)q^{y_i}(1-q)^{1-y_i}]\\ =&\max\limits_{\pi,p,q}L(\pi,p,q) \end{aligned} $spa

  分別對$\pi,p,q$求偏導並等於0,求解線性方程組來估計這三個參數。可是,因爲它是帶有隱變量的,在獲取最終的隨機變量以前有一個分支選擇的過程,致使這個$\log$的內部是加和的形式,計算導數十分困難,而待求解的方程組不是線性方程組。當複雜度一高,解這種方程組幾乎成爲不可能的事。如下推導EM算法,它以迭代的方式來求解這些參數,應該也算一種貪心吧。3d

算法導出與理解

  對於參數爲$\theta$且含有隱變量$Z$的機率模型,進行$n$次抽樣。假設隨機變量$Y$的觀察值爲$\mathcal{Y} = \{y_1,y_2,...,y_n\}$,隱變量$Z$的$m$個可能的取值爲$\mathcal{Z}=\{z_1,z_2,...,z_m\}$。code

  寫出似然函數:orm

$ \begin{aligned} L(\theta) &= \sum\limits_{Y\in\mathcal{Y}}\log P(Y|\theta)\\ &=\sum\limits_{Y\in\mathcal{Y}}\log \sum\limits_{Z\in \mathcal{Z}} P(Y,Z|\theta)\\ \end{aligned} $

  EM算法首先初始化參數$\theta = \theta^0$,而後每一步迭代都會使似然函數增大,即$L(\theta^{k+1})\ge L(\theta^k)$。如何作到不斷變大呢?考慮迭代前的似然函數(爲了方便不用$\theta^{k+1}$):

$ \begin{gather} \begin{aligned} L(\theta)=&\sum\limits_{Y\in \mathcal{Y}} \log\sum\limits_{Z\in \mathcal{Z}} P(Y,Z|\theta)\\ =&\sum\limits_{Y\in \mathcal{Y}} \log\sum\limits_{Z\in \mathcal{Z}} P(Z|Y,\theta^k)\frac{P(Y,Z|\theta)}{P(Z|Y,\theta^k)}\\ \end{aligned} \label{} \end{gather} $

  至於上式的第二個等式爲何取出$P(Z|Y,\theta^k)$而不是別的,正向的緣由我想不出來,馬後炮緣由在後面記錄。

  考慮其中的求和

$ \sum\limits_{Z\in \mathcal{Z}} P(Z|Y,\theta^k)=1$

  且因爲$\log$函數是凹函數,所以由Jenson不等式得

$ \begin{gather} \begin{aligned} L(\theta) \ge&\sum\limits_{Y\in \mathcal{Y}}\sum\limits_{Z\in \mathcal{Z}} P(Z|Y,\theta^k)\log\frac{P(Y,Z|\theta)}{P(Z|Y,\theta^k)}\\ =&B(\theta,\theta^k) \end{aligned}\label{} \end{gather} $

  當$\theta = \theta^k$時,有

$ \begin{gather} \begin{aligned} L(\theta^k) \ge& B(\theta^k,\theta^k)\\ =&\sum\limits_{Y\in \mathcal{Y}}\sum\limits_{Z\in \mathcal{Z}} P(Z|Y,\theta^k)\log\frac{P(Y,Z|\theta^k)}{P(Z|Y,\theta^k)}\\ =&\sum\limits_{Y\in \mathcal{Y}}\sum\limits_{Z\in \mathcal{Z}} P(Z|Y,\theta^k)\log P(Y|\theta^k)\\ =&\sum\limits_{Y\in \mathcal{Y}}\log P(Y|\theta^k)\\ =&L(\theta^k)\\ \end{aligned} \label{} \end{gather} $

  也就是在這時,$(2)$式取等,即$L(\theta^k) = B(\theta^k,\theta^k)$。取

$ \begin{gather} \theta^*=\text{arg}\max\limits_{\theta}B(\theta,\theta^k)\label{} \end{gather} $

  可得不等式

$L(\theta^*)\ge B(\theta^*,\theta^k)\ge B(\theta^k,\theta^k) = L(\theta^k)$

  因此,咱們只要優化$(4)$式,讓$\theta^{k+1} = \theta^*$,便可保證每次迭代的非遞減勢頭,有$L(\theta^{k+1})\ge L(\theta^k)$。而因爲似然函數是機率乘積的對數,必定有$L(\theta) < 0$,因此迭代有上界而且會收斂。如下是《統計學習方法》中EM算法一次迭代的示意圖:

  進一步簡化$(4)$式,去掉優化無關項:

$ \begin{aligned} \theta^*=&\text{arg}\max\limits_{\theta}B(\theta,\theta^k) \\ =&\text{arg}\max\limits_{\theta}\sum\limits_{Y\in \mathcal{Y}}\sum\limits_{Z\in \mathcal{Z}} P(Z|Y,\theta^k)\log\frac{P(Y,Z|\theta)}{P(Z|Y,\theta^k)} \\ =&\text{arg}\max\limits_{\theta}\sum\limits_{Y\in \mathcal{Y}}\sum\limits_{Z\in \mathcal{Z}} P(Z|Y,\theta^k)\log P(Y,Z|\theta) \\ =&\text{arg}\max\limits_{\theta}Q(\theta,\theta^k) \\ \end{aligned} $

  $Q$函數使用導數求極值的方程與沒有隱變量的方程相似,容易求解。

  綜上,EM算法的流程爲:

  1. 設置$\theta^0$的初值。EM算法對初值是敏感的,不一樣初值迭代出來的結果可能不一樣。

  2. 更新$\theta^k = \text{arg}\max\limits_{\theta}Q(\theta,\theta^{k-1})$。理解上來講,一般將這一步分爲計算$Q$與極大化$Q$兩步,即求指望E與求極大M,但在代碼中並不會將它們分出來,所以這裏濃縮爲一步。另外,若是這個優化很難計算的話,由於有不等式的保證,直接取$\theta^k$爲某個$\hat{\theta}$,只要有$Q(\hat{\theta},\theta^{k-1})\ge Q(\theta^{k-1},\theta^{k-1})$便可。

  3. 比較$\theta^k$與$\theta^{k-1}$的差別,好比求它們的差的二範數,若小於必定閾值就結束迭代,不然重複步驟2。

  下面記錄一下我對$(1)$式取出$P(Z|Y,\theta^k)$而不取別的$P$的理解:

  通過以上的推導,我認爲這是爲了給不等式取等創造條件。若是不能肯定$L(\theta^k)$與$Q(\theta^k,\theta^k)$可否取等,那麼取$Q$的最大值$Q(\theta^*,\theta^k)$時,儘管有$Q(\theta^*,\theta^k)\ge Q(\theta^k,\theta^k)$,但並不能保證$L(\theta^*)\ge L(\theta^k)$,迭代的不減性質就就沒了。

  我這裏暫且把它看作一種巧合,是研究EM算法的大佬,碰巧想用Jenson不等式來迭代而構造出來的一種作法。本人段位還太弱,沒法正向理解其中的緣故,只能以這種方式來揣度大佬的思路了。知乎大佬發的EM算法九層理解(點擊連接),我當前只能到第3層,有時間必定要拜讀一下深度學習之父的著做。

高斯混合模型的應用

迭代式推導

  假設高斯混合模型混合了$m$個高斯分佈,參數爲$\theta = (\alpha_1,\theta_1,\alpha_2,\theta_2,...,\alpha_m,\theta_m),\theta_i=(\mu_i,\sigma_i)$則整個機率分佈爲:

$\displaystyle P(y|\theta) = \sum\limits_{i=1}^m\alpha_i \phi(y|\theta_i) =  \sum\limits_{i=1}^m\frac{\alpha_i }{\sqrt{2\pi}\sigma_i}\exp\left(-\frac{(y-\mu_i)^2}{2\sigma_i^2}\right),\;\text{where}\;\sum\limits_{j=1}^m\alpha_j = 1$

  對混合分佈抽樣$n$次獲得$\{y_1,...,y_n\}$,則在第$k+1$次迭代,待優化式爲:

$\begin{gather}\begin{aligned} &\max\limits_{\theta}Q(\theta,\theta^k) \\ =&\max\limits_{\theta}\sum\limits_{Y\in \mathcal{Y}}\sum\limits_{Z\in \mathcal{Z}} P(Z|Y,\theta^k)\log P(Y,Z|\theta) \\ =&\max\limits_{\theta}\sum\limits_{Y\in \mathcal{Y}}\sum\limits_{Z\in \mathcal{Z}} \frac{P(Z,Y|\theta^k)}{P(Y|\theta^k)}\log P(Y,Z|\theta) \\ =&\max\limits_{\theta}\sum\limits_{i=1}^n\sum\limits_{j=1}^m \frac{\alpha_j^k\phi(y_i|\theta_j^k)} {\sum\limits_{l=1}^m \alpha_l^k\phi(y_i|\theta_l^k)} \log \left[\alpha_j\phi(y_i|\theta_j)\right] \\ =&\max\limits_{\theta}\sum\limits_{i=1}^n\sum\limits_{j=1}^m \frac{\alpha_j^k\phi(y_i|\theta_j^k)} {\sum\limits_{l=1}^m \alpha_l^k\phi(y_i|\theta_l^k)} \log \left[ \frac{\alpha_j}{\sqrt{2\pi}\sigma_j}\exp\left(-\frac{(y_i-\mu_j)^2}{2\sigma_j^2}\right) \right]\\ =&\max\limits_{\theta}\sum\limits_{j=1}^m \sum\limits_{i=1}^n \frac{\alpha_j^k\phi(y_i|\theta_j^k)} {\sum\limits_{l=1}^m \alpha_l^k\phi(y_i|\theta_l^k)} \left[ \log \alpha_j - \log \sigma_j-\frac{(y_i-\mu_j)^2}{2\sigma_j^2} \right]\\  \end{aligned} \label{}\end{gather}$

計算α

  定義

$\displaystyle n_j = \sum\limits_{i=1}^n \frac{\alpha_j^k\phi(y_i|\theta_j^k)} {\sum\limits_{l=1}^m \alpha_l^k\phi(y_i|\theta_l^k)}$

  則對於$\alpha$,優化式爲

$\begin{gather} \begin{aligned} \max\limits_{\alpha}\sum\limits_{j=1}^m n_j \log \alpha_j \end{aligned} \label{}\end{gather}$

  又由於$\sum\limits_{j=1}^m \alpha_j=1$,因此只需優化$m-1$個參數,上式變爲:

$ \max\limits_\alpha \left[ \begin{matrix} n_1&n_2&\cdots &n_{m-1}&n_{m}\\ \end{matrix} \right] \cdot \left[ \begin{matrix} \log\alpha_1\\ \log\alpha_2\\ \vdots\\ \log\alpha_{m-1}\\ \log(1-\alpha_1-\cdots-\alpha_{m-1})\\ \end{matrix} \right] $

  對每一個$\alpha_j$求導並等於0,獲得線性方程組:

$\left[\begin{matrix}n_1+n_m&n_1&n_1&\cdots&n_1\\n_2&n_2+n_m&n_2&\cdots&n_2\\n_3&n_3&n_3+n_m&\cdots&n_3\\&&&\vdots&\\n_{m-1}&n_{m-1}&n_{m-1}&\cdots&n_{m-1}+n_m\\\end{matrix}\right]\cdot\left[\begin{matrix}\alpha_1\\\alpha_2\\\alpha_3\\\vdots\\\alpha_{m-1}\\\end{matrix}\right]=\left[\begin{matrix}n_1\\n_2\\n_3\\\vdots\\n_{m-1}\\\end{matrix}\right]$

  求解這個爪形線性方程組,獲得

$\left[\begin{matrix}\sum_{j=1}^mn_j/n_1&0&0&\cdots&0\\-n_2/n_1&1&0&\cdots&0\\-n_3/n_1&0&1&\cdots&0\\&&&\vdots&\\-n_{m-1}/n_1&0&0&\cdots&1\\\end{matrix}\right]\cdot\left[\begin{matrix}\alpha_1\\\alpha_2\\\alpha_3\\\vdots\\\alpha_{m-1}\\\end{matrix}\right]=\left[\begin{matrix}1\\0\\0\\\vdots\\0\\\end{matrix}\right]$

  由於

$\displaystyle \sum\limits_{j=1}^m n_j =   \sum\limits_{j=1}^m\sum\limits_{i=1}^n \frac{\alpha_j^k\phi(y_i|\theta_j^k)} {\sum\limits_{l=1}^m \alpha_l^k\phi(y_i|\theta_l^k)}=\sum\limits_{i=1}^n \sum\limits_{j=1}^m \frac{\alpha_j^k\phi(y_i|\theta_j^k)} {\sum\limits_{l=1}^m \alpha_l^k\phi(y_i|\theta_l^k)} =\sum\limits_{i=1}^n 1 =  n$

  解得

$\displaystyle\alpha_j = \frac{n_j}{n} = \frac{1}{n}\sum\limits_{i=1}^n \frac{\alpha_j^k\phi(y_i|\theta_j^k)} {\sum\limits_{l=1}^m \alpha_l^k\phi(y_i|\theta_l^k)}$

計算σ與μ

  與$\alpha$不一樣,它的方程組是全部$\alpha_j$之間聯立的;而$\sigma,\mu$的方程組則是$\sigma_j$與$\mu_j$之間聯立的。定義

$\displaystyle p_{ji} = \frac{\alpha_j^k\phi(y_i|\theta_j^k)} {\sum\limits_{l=1}^m \alpha_l^k\phi(y_i|\theta_l^k)}$

  則對於$\sigma_j,\mu_j$,優化式爲(比較$(6),(7)$式的區別)

$\begin{gather}\displaystyle\min\limits_{\sigma_j,\mu_j}\sum\limits_{i=1}^n p_{ji} \left(\log \sigma_j+\frac{(y_i-\mu_j)^2}{2\sigma_j^2} \right)\label{}\end{gather}$

  對上式求導等於0,解得

$ \begin{aligned} &\mu_j = \frac{\sum\limits_{i=1}^np_{ji}y_i}{\sum\limits_{i=1}^np_{ji}} = \frac{\sum\limits_{i=1}^np_{ji}y_i}{n_j} = \frac{\sum\limits_{i=1}^np_{ji}y_i}{n\alpha_j}\\ &\sigma^2_j = \frac{\sum\limits_{i=1}^np_{ji}(y_i-\mu_j)^2}{\sum\limits_{i=1}^np_{ji}} = \frac{\sum\limits_{i=1}^np_{ji}(y_i-\mu_j)^2}{n_j} = \frac{\sum\limits_{i=1}^np_{ji}(y_i-\mu_j)^2}{n\alpha_j} \end{aligned} $

代碼實現

  對於機率密度爲$P(x) = −2x+2,x\in (0,1)$的隨機變量,如下代碼實現GMM對這一律率密度的的擬合。共10000個抽樣,GMM混合了100個高斯分佈。

#%%定義參數、函數、抽樣
import numpy as np
import matplotlib.pyplot as plt

dis_num = 100 #用於擬合的分佈數量
sample_num = 10000 #用於擬合的分佈數量
alphas = np.random.rand(dis_num) 
alphas /= np.sum(alphas)  
mus = np.random.rand(dis_num)
sigmas = np.random.rand(dis_num)**2#方差,不是標準差
samples = 1-(1-np.random.rand(sample_num))**0.5 #樣本
C_pi = (2*np.pi)**0.5

dis_val = np.zeros([sample_num,dis_num])    #每一個樣本在每一個分佈成員上都有值,造成一個sample_num*dis_num的矩陣
pij = np.zeros([sample_num,dis_num])        #pij矩陣
def calc_dis_val(sample,alpha,mu,sigma,c_pi):
    return alpha*np.exp(-(sample[:,np.newaxis]-mu)**2/(2*sigma))/(c_pi*sigma**0.5) 
def calc_pij(dis_v):  
    return dis_v / dis_v.sum(axis = 1)[:,np.newaxis]      
#%%優化 
for i in range(1000):
    print(i)
    dis_val = calc_dis_val(samples,alphas,mus,sigmas,C_pi)
    pij = calc_pij(dis_val)  
    nj = pij.sum(axis = 0)
    alphas_before = alphas
    alphas = nj / sample_num
    mus = (pij*samples[:,np.newaxis]).sum(axis=0)/nj
    sigmas = (pij*(samples[:,np.newaxis] - mus)**2 ).sum(axis=0)/nj
    a = np.linalg.norm(alphas_before - alphas)
    print(a)
    if  a< 0.001:
        break

#%%繪圖 
plt.rcParams['font.sans-serif']=['SimHei'] #用來正常顯示中文標籤
plt.rcParams['axes.unicode_minus']=False #用來正常顯示負號
def get_dis_val(x,alpha,sigma,mu,c_pi):
    y = np.zeros([len(x)]) 
    for a,s,m in zip(alpha,sigma,mu):   
        y += a*np.exp(-(x-m)**2/(2*s))/(c_pi*s**0.5)   
    return y
def paint(alpha,sigma,mu,c_pi,samples):
    x = np.linspace(-1,2,500)
    y = get_dis_val(x,alpha,sigma,mu,c_pi) 
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.hist(samples,density = True,label = '抽樣分佈') 
    ax.plot(x,y,label = "擬合的機率密度")
    ax.legend(loc = 'best')
    plt.show()
paint(alphas,sigmas,mus,C_pi,samples)

  如下是擬合結果圖,有點像是核函數估計,可是徹底不一樣:

EM算法的推廣

  EM算法的推廣是對EM算法的另外一種解釋,最終的結論是同樣的,它可使咱們對EM算法的理解更加深刻。它也解釋了我在$(1)$式下方提出的疑問:爲何取出$P(Z|Y,\theta^k)$而不是別的。

  定義$F$函數,即所謂Free energy自由能(自由能具體是啥先不研究了):

$ \begin{aligned} F(\tilde{P},\theta) &= E_{\tilde{P}}(\log P(Y,Z|\theta)) + H(\tilde{P})\\ &= \sum\limits_{Z\in \mathcal{Z}} \tilde{P}(Z)\log P(Y,Z|\theta) - \sum\limits_{Z\in \mathcal{Z}} \tilde{P}(Z)\log \tilde{P}(Z)\\ \end{aligned} $

  其中$\tilde{P}$是$Z$的某個機率分佈(不必定是單獨的分佈,多是在某個條件下的分佈),$E_{\tilde{P}}$表示分佈$\tilde{P}$下的指望,$H$表示信息熵。

  咱們計算一下,對於固定的$\theta$,什麼樣的$\tilde{P}$會使$F(\tilde{P},\theta) $最大。也就是找到一個函數$\tilde{P}_{\theta}$,使$F$極大,寫成優化的形式就是(這裏是找函數而不是找參數哦,理解上可能要用到泛函分析的內容):

$ \begin{aligned} &\max\limits_{\tilde{P}} \sum\limits_{Z\in \mathcal{Z}} \tilde{P}(Z)\log P(Y,Z|\theta) - \sum\limits_{Z\in \mathcal{Z}} \tilde{P}(Z)\log \tilde{P}(Z)\\ &\;\text{s.t.}\; \sum\limits_{Z\in \mathcal{Z}}\tilde{P}(Z) = 1 \end{aligned} $

  拉格朗日函數(拉格朗日對偶性,點擊連接)爲:

$ \begin{aligned} L =  \sum\limits_{Z\in \mathcal{Z}} \tilde{P}(Z)\log P(Y,Z|\theta) - \sum\limits_{Z\in \mathcal{Z}} \tilde{P}(Z)\log \tilde{P}(Z)+ \lambda\left(1-\sum\limits_{Z\in \mathcal{Z}}\tilde{P}(Z)\right) \end{aligned} $

  由於每一個$\tilde{P}(Z)$之間都是求和,沒有其它其它諸如乘積的操做,因此能夠直接令$L$對某個$\tilde{P}(Z)$求導等於$0$來計算極值:

$ \begin{aligned} \frac{\partial L}{\partial \tilde{P}(Z)} = \log P(Y,Z|\theta) - \log \tilde{P}(Z) -1 -\lambda = 0 \end{aligned} $

  因而能夠推出:

$ \begin{aligned} P(Y,Z|\theta) = e^{1+\lambda}\tilde{P}(Z) \end{aligned} $

  又由約束$\sum\limits_{Z\in \mathcal{Z}}\tilde{P}(Z) = 1$:

$P(Y|\theta) = e^{1+\lambda}$

  因而獲得

$\begin{gather}\tilde{P}_{\theta}(Z) = P(Z|Y,\theta)\label{}\end{gather}$

  代回$F(\tilde{P},\theta)$,獲得

$ \begin{aligned} F(\tilde{P}_\theta,\theta) &= \sum\limits_{Z\in \mathcal{Z}} P(Z|Y,\theta)\log P(Y,Z|\theta) - \sum\limits_{Z\in \mathcal{Z}} P(Z|Y,\theta)\log P(Z|Y,\theta)\\ &= \sum\limits_{Z\in \mathcal{Z}} P(Z|Y,\theta)\log \frac{P(Y,Z|\theta)}{P(Z|Y,\theta)}\\ &= \log P(Y|\theta)\\ \end{aligned} $

  也就是說,對$F$關於$\tilde{P}$進行最大化後,$F$就是待求分佈的對數似然;而後再關於$\theta$最大化,也就算得了最終要估計的參數$\hat{\theta}$。因此,EM算法也能夠解釋爲$F$的極大-極大算法。優化結果$(8)$式也解釋了我以前在$(1)$式下方的提問。

  那麼,怎麼使用$F$函數進行估計呢?仍是要用迭代來算,迭代方式是和前面介紹的同樣的(懶得記錄了,統計學習方法上直接看吧)。實際上,$F$函數的方法只是提供了EM算法的另外一種解釋,具體方法上並無提高之處。

相關文章
相關標籤/搜索