EM(最大期望)算法推導、GMM的應用與代碼實現

  EM算法是一種迭代算法,用於含有隱變量的概率模型參數的極大似然估計。 使用EM算法的原因   首先舉李航老師《統計學習方法》中的例子來說明爲什麼要用EM算法估計含有隱變量的概率模型參數。   假設有三枚硬幣,分別記作A, B, C。這些硬幣正面出現的概率分別是$\pi,p,q$。進行如下擲硬幣試驗:先擲硬幣A,根據其結果選出硬幣B或C,正面選硬幣B,反面邊硬幣C;然後擲選出的硬幣,擲硬幣的結果
相關文章
相關標籤/搜索