(【本文所使用的Python庫和版本號】: Python 3.5, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2 )git
數據預處理的必要性:在真實世界中,常常須要處理大量的原始數據,這些原始數據是機器學習算法沒法理解的,因此爲了讓機器學習算法理解原始數據,須要對數據進行預處理。github
最經常使用的數據預處理技術:算法
把每一個特徵的平均值移除,以保證特徵均值爲0(即標準化處理),這樣作能夠消除特徵彼此間的誤差。機器學習
###########對數據集進行Normalization#########################
import numpy as np
from sklearn import preprocessing
data=np.array([[3, -1.5, 2, -5.4],
[0, 4,-0.3,2.1],
[1, 3.3, -1.9, -4.3]]) # 原始數據矩陣 shape=(3,4)
data_standardized=preprocessing.scale(data)
print(data_standardized.shape)
print('Mean={}'.format(data_standardized.mean(axis=0)))
print('Mean2={}'.format(np.mean(data_standardized,axis=0)))
print('standardized: ')
print(data_standardized)
print('STD={}'.format(np.std(data_standardized,axis=0)))
複製代碼
-------------------------------------輸---------出--------------------------------工具
(3, 4) Mean=[ 5.55111512e-17 -1.11022302e-16 -7.40148683e-17 -7.40148683e-17] Mean2=[ 5.55111512e-17 -1.11022302e-16 -7.40148683e-17 -7.40148683e-17] standardized: [[ 1.33630621 -1.40451644 1.29110641 -0.86687558] [-1.06904497 0.84543708 -0.14577008 1.40111286] [-0.26726124 0.55907936 -1.14533633 -0.53423728]] STD=[1. 1. 1. 1.]學習
--------------------------------------------完-------------------------------------編碼
########################小**********結###############################spa
1, 值移除以後的矩陣每一列的均值約爲0,而std爲1。這樣作的目的是確保每個特徵列的數值都在相似的數據範圍之間,防止某一個特徵列數據自然的數值太大而一家獨大。code
2, 能夠直接調用preprocessing模塊中成熟的scale方法來對一個numpy 矩陣進行均值移除。orm
3, 求一個numpy矩陣的平均值(或std,min,max等)至少有兩種方法,如代碼中第9行和第10行所示。
#################################################################
必要性:數據點中每一個特徵列的數值範圍可能變化很大,所以,有時須要將特徵列的數值範圍縮放到合理的大小。
###########對數據集進行範圍縮放#########################
import numpy as np
from sklearn import preprocessing
data=np.array([[3, -1.5, 2, -5.4],
[0, 4,-0.3,2.1],
[1, 3.3, -1.9, -4.3]]) # 原始數據矩陣 shape=(3,4)
data_scaler=preprocessing.MinMaxScaler(feature_range=(0,1)) # 縮放到(0,1)之間
data_scaled=data_scaler.fit_transform(data)
print('scaled matrix: *********************************')
print(data_scaled)
複製代碼
-------------------------------------輸---------出--------------------------------
scaled matrix: ********************************* [[1. 0. 1. 0. ] [0. 1. 0.41025641 1. ] [0.33333333 0.87272727 0. 0.14666667]]
--------------------------------------------完-------------------------------------
########################小**********結###############################
1. 值移除以後的矩陣每一列的均值約爲0,而std爲1。這樣作的目的是確保每個特徵列的數值都在相似的數據範圍之間,防止某一個特徵列數據自然的數值太大而一家獨大。
2. 能夠直接調用preprocessing模塊中成熟的scale方法來對一個numpy 矩陣進行均值移除。
3. 求一個numpy矩陣的平均值(或std,min,max等)至少有兩種方法,如代碼中第9行和第10行所示
#################################################################
用於須要對特徵向量的值進行調整時,以保證每一個特徵向量的值都縮放到相同的數值範圍。機器學習中最經常使用的歸一化形式就是將特徵向量調整爲L1範數,使特徵向量的數值之和爲1.
###########對數據集進行Normalization#########################
import numpy as np
from sklearn import preprocessing
data=np.array([[3, -1.5, 2, -5.4],
[0, 4,-0.3,2.1],
[1, 3.3, -1.9, -4.3]]) # 原始數據矩陣 shape=(3,4)
data_L1_normalized=preprocessing.normalize(data,norm='l1')
print('L1 normalized matrix: *********************************')
print(data_L1_normalized)
print('sum of matrix: {}'.format(np.sum(data_L1_normalized)))
data_L2_normalized=preprocessing.normalize(data) # 默認:l2
print('L2 normalized matrix: *********************************')
print(data_L2_normalized)
print('sum of matrix: {}'.format(np.sum(data_L2_normalized)))
複製代碼
-------------------------------------輸---------出--------------------------------
L1 normalized matrix: ********************************* [[ 0.25210084 -0.12605042 0.16806723 -0.45378151] [ 0. 0.625 -0.046875 0.328125 ] [ 0.0952381 0.31428571 -0.18095238 -0.40952381]] sum of matrix: 0.5656337535014005 L2 normalized matrix: ********************************* [[ 0.45017448 -0.22508724 0.30011632 -0.81031406] [ 0. 0.88345221 -0.06625892 0.46381241] [ 0.17152381 0.56602858 -0.32589524 -0.73755239]] sum of matrix: 0.6699999596689536
--------------------------------------------完-------------------------------------
########################小**********結###############################
1,Normaliztion以後全部的特徵向量的值都縮放到同一個數值範圍,能夠確保數據點沒有由於特徵的基本性質而產生的較大差別,即確保全部數據點都處於同一個數據量,提升不一樣特徵數據的可比性。
2,注意和均值移除的區別:均值移除是對每個特徵列都縮放到相似的數值範圍,每個特徵列的均值爲0,而Normalization是將全局全部數值都縮放到同一個數值範圍。
#################################################################
二值化用於將數值特徵向量轉換爲布爾類型向量。
###########對數據集進行Binarization#########################
import numpy as np
from sklearn import preprocessing
data=np.array([[3, -1.5, 2, -5.4],
[0, 4,-0.3,2.1],
[1, 3.3, -1.9, -4.3]]) # 原始數據矩陣 shape=(3,4)
data_binarized=preprocessing.Binarizer(threshold=1.4).transform(data)
print('binarized matrix: *********************************')
print(data_binarized)
複製代碼
-------------------------------------輸---------出--------------------------------
binarized matrix: ********************************* [[1. 0. 1. 0.] [0. 1. 0. 1.] [0. 1. 0. 0.]]
--------------------------------------------完-------------------------------------
########################小**********結###############################
1,二值化以後的數據點都是0或者1,因此叫作二值化。
2,計算方法是,將全部大於threshold的數據都改成1,小於等於threshold的都設爲0。
3,常常用於出現某種特徵(好比設爲1),或者沒有出現某種特徵(設爲0)的應用場合。
#################################################################
一般,須要處理的數值都是稀疏地,散亂地分佈在空間中,但咱們並不須要存儲這些大數值,這時就須要使用獨熱編碼,獨熱編碼其實是一種收緊特徵向量的工具。
###########對數據集進行獨熱編碼#########################
import numpy as np
from sklearn import preprocessing
data=np.array([[0,2,1,12],
[1,3,5,3],
[2,3,2,12],
[1,2,4,3]]) # 原始數據矩陣 shape=(4,4)
encoder=preprocessing.OneHotEncoder()
encoder.fit(data)
encoded_vector=encoder.transform([[2,3,5,3]]).toarray()
print('one-hot encoded matrix: *********************************')
print(encoded_vector.shape)
print(encoded_vector)
複製代碼
-------------------------------------輸---------出--------------------------------
one-hot encoded matrix: ********************************* (1, 11) [[0. 0. 1. 0. 1. 0. 0. 0. 1. 1. 0.]]
--------------------------------------------完-------------------------------------
########################小**********結###############################
1,獨熱編碼能夠縮小特徵向量的維度,將稀疏的,散亂的數據集(好比代碼塊中的data,shape=(4,4))收縮爲11維緻密矩陣(如輸出結果,shape=(1,11))。
2,編碼方式爲:根據原始數據集data構建編碼器encoder,用編碼器來對新數據進行編碼。好比,第0列有三個不一樣值(0,1,2),故而有三個維度,即0=100,1=010,2=001;同理,第1列有兩個不一樣值(2,3),故而只有兩個維度,即2=10,3=01;同理,第2列有四個不一樣值(1,5,2,4),故而有四個維度,即1=1000,2=0100,4=0010,5=0001同理,第3列有兩個不一樣值(3,12),故而只有兩個維度,即3=10,12=01。因此在面對新數據[[2,3,5,3]]時,第0列的2就對應於001,第二列的3對應於01,第三列的5對應於0001,第四列的3對應於10,鏈接起來後就是輸出的這個(1,11)矩陣,即爲讀了編碼後的緻密矩陣。
3,若是面對的新數據不存在上面的編碼器中,好比[[2,3,5,4]]時,4不存在於第3列(只有兩個離散值3和12),則輸出爲00,鏈接起來後是[[0. 0. 1. 0. 1. 0. 0. 0. 1. 0. 0.]],注意倒數第二個數字變成了0
#################################################################
注:本部分代碼已經所有上傳到(個人github)上,歡迎下載。
參考資料:
1, Python機器學習經典實例,Prateek Joshi著,陶俊傑,陳小莉譯