JavaShuo
欄目
標籤
期望風險、經驗風險、結構風險的關係
時間 2020-12-31
標籤
函數
經驗
預測
简体版
原文
原文鏈接
首先引入損失函數的概念:損失函數就一個具體的樣本而言,模型預測的值與真實值之間的差距。對於一個樣本(xi,yi)其中yi爲真實值,而f(xi)爲我們的預測值。使用損失函數L(f(xi),yi)來表示真實值和預測值之間的差距。兩者差距越小越好,最理想的情況是預測值剛好等於真實值。 常見的損失函數如下: 通過損失函數我們可以得知對於單個樣本點的預測能力,對於訓練樣本集中所有數據的預測可以通過累加得到,
>>阅读原文<<
相關文章
1.
期望風險、經驗風險、結構風險的關係
2.
關於機器學習中的經驗風險、期望風險與結構風險
3.
正則化(regularization): 期望風險、經驗風險、結構風險、L0範數、L1範數、L2範數
4.
(轉)機器學習優化問題-經驗風險、期望風險、結構風險
5.
【ML學習筆記】7:查漏補缺1(期望風險,經驗風險,過學習,結構風險)
6.
經驗風險最小化
7.
風險度量之[下行風險]
8.
正則化(經驗風險最小化與結構風險最小化)
9.
[機器學習筆記] 什麼是經驗風險?什麼是結構風險?
10.
風險分解結構
更多相關文章...
•
Spring體系結構詳解
-
Spring教程
•
Rust 結構體
-
RUST 教程
•
NewSQL-TiDB相關
•
Docker容器實戰(七) - 容器眼光下的文件系統
相關標籤/搜索
風險
投資風險
風險投資
信用風險
風險管理
高風險
風風雨雨
保險
NoSQL教程
MySQL教程
Redis教程
架構
文件系統
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
安裝cuda+cuDNN
2.
GitHub的使用說明
3.
phpDocumentor使用教程【安裝PHPDocumentor】
4.
yarn run build報錯Component is not found in path 「npm/taro-ui/dist/weapp/components/rate/index「
5.
精講Haproxy搭建Web集羣
6.
安全測試基礎之MySQL
7.
C/C++編程筆記:C語言中的複雜聲明分析,用實例帶你完全讀懂
8.
Python3教程(1)----搭建Python環境
9.
李宏毅機器學習課程筆記2:Classification、Logistic Regression、Brief Introduction of Deep Learning
10.
阿里雲ECS配置速記
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
期望風險、經驗風險、結構風險的關係
2.
關於機器學習中的經驗風險、期望風險與結構風險
3.
正則化(regularization): 期望風險、經驗風險、結構風險、L0範數、L1範數、L2範數
4.
(轉)機器學習優化問題-經驗風險、期望風險、結構風險
5.
【ML學習筆記】7:查漏補缺1(期望風險,經驗風險,過學習,結構風險)
6.
經驗風險最小化
7.
風險度量之[下行風險]
8.
正則化(經驗風險最小化與結構風險最小化)
9.
[機器學習筆記] 什麼是經驗風險?什麼是結構風險?
10.
風險分解結構
>>更多相關文章<<