JavaShuo
欄目
標籤
Localization and Mapping using Instance-specific Mesh Models 2019
時間 2020-12-26
標籤
語義 SLAM
相機重定位
简体版
原文
原文鏈接
加利福尼亞大學,定位和建圖,語義建圖,單目 本文着重於使用單目相機建立語義地圖,包括目標姿態和形狀. 本文貢獻在於,提出了一個針對特定實例的網格模型,該模型可以利用相機圖片中提取的語義信息在線優化. 1. 簡介 人工感知技術的基礎在於集幾何推理和語義內容推理。當前研究的一個主要挑戰是在VIO和SLAM算法中如何利用深度學習提供的信息(如語義邊緣,目標關鍵點等)來建立有精確形狀,結構和功能的目標模型
>>阅读原文<<
相關文章
1.
Localization and Mapping using Instance-specific Mesh Models
2.
MEASUREMENT MODELS AND PRINCIPLES FOR SOURCE LOCALIZATION
3.
Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping ,2019
4.
[SLAM] 01. "Simultaneous Localization and Mapping"
5.
EMPNet: Neural Localisation and Mapping Using Embedded Memory Points,2019
6.
Stereo Parallel Tracking and Mapping for robot localization(S-PTAM)
7.
閱讀《A Survey of Monocular Simultaneous Localization and Mapping》
8.
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
9.
【OverFeat】《OverFeat:Integrated Recognition, Localization and Detection using Convolutional Networks》
10.
(Review cs231n) Spatial Localization and Detection(classification and localization)
更多相關文章...
•
W3C RDF and OWL 活動
-
W3C 教程
•
XSL-FO table-and-caption 對象
-
XSL-FO 教程
•
RxJava操作符(七)Conditional and Boolean
•
YAML 入門教程
相關標籤/搜索
localization
mesh
mapping
using
models
models&orm
2.models
action.....and
between...and
Hibernate教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
跳槽面試的幾個實用小技巧,不妨看看!
2.
Mac實用技巧 |如何使用Mac系統中自帶的預覽工具將圖片變成黑白色?
3.
Mac實用技巧 |如何使用Mac系統中自帶的預覽工具將圖片變成黑白色?
4.
如何使用Mac系統中自帶的預覽工具將圖片變成黑白色?
5.
Mac OS非兼容Windows軟件運行解決方案——「以VMware & Microsoft Access爲例「
6.
封裝 pyinstaller -F -i b.ico excel.py
7.
數據庫作業三ER圖待完善
8.
nvm安裝使用低版本node.js(非命令安裝)
9.
如何快速轉換圖片格式
10.
將表格內容分條轉換爲若干文檔
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Localization and Mapping using Instance-specific Mesh Models
2.
MEASUREMENT MODELS AND PRINCIPLES FOR SOURCE LOCALIZATION
3.
Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping ,2019
4.
[SLAM] 01. "Simultaneous Localization and Mapping"
5.
EMPNet: Neural Localisation and Mapping Using Embedded Memory Points,2019
6.
Stereo Parallel Tracking and Mapping for robot localization(S-PTAM)
7.
閱讀《A Survey of Monocular Simultaneous Localization and Mapping》
8.
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
9.
【OverFeat】《OverFeat:Integrated Recognition, Localization and Detection using Convolutional Networks》
10.
(Review cs231n) Spatial Localization and Detection(classification and localization)
>>更多相關文章<<