JavaShuo
欄目
標籤
Stereo Parallel Tracking and Mapping for robot localization(S-PTAM)
時間 2020-12-30
標籤
slam
計算機視覺
欄目
快樂工作
简体版
原文
原文鏈接
機器人定位的立體並行跟蹤與映射 S-PTAM(2015) 1. 介紹 2. 方法 1. 跟蹤 2. 映射 3. 實驗 1. MIT數據集 2. KITTI數據集 1. 介紹 按照並行跟蹤與映射(PTAM)的方法,S-PTAM將問題分爲兩個主要的並行任務:攝像機跟蹤和地圖優化。跟蹤線程匹配特徵、創建新點並估計每個新幀的相機姿勢,映射線程迭代地細化組成地圖的附近點地標。 S-PTAM特點: 1)利用S
>>阅读原文<<
相關文章
1.
Multi-Camera Parallel Tracking and Mapping (MCPTAM)
2.
Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping ,2019
3.
[SLAM] 01. "Simultaneous Localization and Mapping"
4.
Online Object Detection and Localization on Stereo Visual SLAM System
5.
閱讀《A Survey of Monocular Simultaneous Localization and Mapping》
6.
論文筆記_SLAM_Review_Visual simultaneous localization and mapping: a survey
7.
Localization and Mapping using Instance-specific Mesh Models 2019
8.
Stereo Vision-based Semantic 3D Object and Ego-motion Tracking for Autonomous Driving
9.
Localization and Mapping using Instance-specific Mesh Models
10.
論文《FLAME:Feature-Likeilhood Based Mapping and Localization for Autonomous Vehicles》閱讀總結
更多相關文章...
•
Swift for 循環
-
Swift 教程
•
Scala for循環
-
Scala教程
•
RxJava操作符(七)Conditional and Boolean
•
Java 8 Stream 教程
相關標籤/搜索
localization
stereo
mapping
tracking
parallel
robot
Eye-Tracking
1.parallel
action.....and
between...and
快樂工作
Hibernate教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
windows下配置opencv
2.
HED神經網
3.
win 10+ annaconda+opencv
4.
ORB-SLAM3系列-多地圖管理
5.
opencv報錯——(mtype == CV_8U || mtype == CV_8S)
6.
OpenCV計算機視覺學習(9)——圖像直方圖 & 直方圖均衡化
7.
【超詳細】深度學習原理與算法第1篇---前饋神經網絡,感知機,BP神經網絡
8.
Python數據預處理
9.
ArcGIS網絡概述
10.
數據清洗(三)------檢查數據邏輯錯誤
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Multi-Camera Parallel Tracking and Mapping (MCPTAM)
2.
Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping ,2019
3.
[SLAM] 01. "Simultaneous Localization and Mapping"
4.
Online Object Detection and Localization on Stereo Visual SLAM System
5.
閱讀《A Survey of Monocular Simultaneous Localization and Mapping》
6.
論文筆記_SLAM_Review_Visual simultaneous localization and mapping: a survey
7.
Localization and Mapping using Instance-specific Mesh Models 2019
8.
Stereo Vision-based Semantic 3D Object and Ego-motion Tracking for Autonomous Driving
9.
Localization and Mapping using Instance-specific Mesh Models
10.
論文《FLAME:Feature-Likeilhood Based Mapping and Localization for Autonomous Vehicles》閱讀總結
>>更多相關文章<<