JavaShuo
欄目
標籤
Localization and Mapping using Instance-specific Mesh Models
時間 2020-12-26
原文
原文鏈接
本文使用IMU輔助單目相機同時估計相機位姿和基於三角形網格(triangular mesh)對物體進行建模。 問題描述 在已知對物體的觀測的前提下,優化相機的位姿,構成物體的角點和網格。代價函數分成兩項,語義分割結果的差距和特徵點之間的距離: L mask ( s , s ^ ) = − ∥ s ⊙ s ^ ∥ 1 ∥ s + s ^ − s ⊙ s ^ ∥ 1 L k p s ( y , y
>>阅读原文<<
相關文章
1.
Localization and Mapping using Instance-specific Mesh Models 2019
2.
MEASUREMENT MODELS AND PRINCIPLES FOR SOURCE LOCALIZATION
3.
[SLAM] 01. "Simultaneous Localization and Mapping"
4.
Stereo Parallel Tracking and Mapping for robot localization(S-PTAM)
5.
閱讀《A Survey of Monocular Simultaneous Localization and Mapping》
6.
Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping ,2019
7.
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
8.
【OverFeat】《OverFeat:Integrated Recognition, Localization and Detection using Convolutional Networks》
9.
(Review cs231n) Spatial Localization and Detection(classification and localization)
10.
EMPNet: Neural Localisation and Mapping Using Embedded Memory Points,2019
更多相關文章...
•
W3C RDF and OWL 活動
-
W3C 教程
•
XSL-FO table-and-caption 對象
-
XSL-FO 教程
•
RxJava操作符(七)Conditional and Boolean
•
YAML 入門教程
相關標籤/搜索
localization
mesh
mapping
using
models
models&orm
2.models
action.....and
between...and
using&n
Hibernate教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
吳恩達深度學習--神經網絡的優化(1)
2.
FL Studio鋼琴卷軸之工具菜單的Riff命令
3.
RON
4.
中小企業適合引入OA辦公系統嗎?
5.
我的開源的MVC 的Unity 架構
6.
Ubuntu18 安裝 vscode
7.
MATLAB2018a安裝教程
8.
Vue之v-model原理
9.
【深度學習】深度學習之道:如何選擇深度學習算法架構
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Localization and Mapping using Instance-specific Mesh Models 2019
2.
MEASUREMENT MODELS AND PRINCIPLES FOR SOURCE LOCALIZATION
3.
[SLAM] 01. "Simultaneous Localization and Mapping"
4.
Stereo Parallel Tracking and Mapping for robot localization(S-PTAM)
5.
閱讀《A Survey of Monocular Simultaneous Localization and Mapping》
6.
Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping ,2019
7.
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
8.
【OverFeat】《OverFeat:Integrated Recognition, Localization and Detection using Convolutional Networks》
9.
(Review cs231n) Spatial Localization and Detection(classification and localization)
10.
EMPNet: Neural Localisation and Mapping Using Embedded Memory Points,2019
>>更多相關文章<<