JavaShuo
欄目
標籤
Localization and Mapping using Instance-specific Mesh Models
時間 2020-12-26
原文
原文鏈接
本文使用IMU輔助單目相機同時估計相機位姿和基於三角形網格(triangular mesh)對物體進行建模。 問題描述 在已知對物體的觀測的前提下,優化相機的位姿,構成物體的角點和網格。代價函數分成兩項,語義分割結果的差距和特徵點之間的距離: L mask ( s , s ^ ) = − ∥ s ⊙ s ^ ∥ 1 ∥ s + s ^ − s ⊙ s ^ ∥ 1 L k p s ( y , y
>>阅读原文<<
相關文章
1.
Localization and Mapping using Instance-specific Mesh Models 2019
2.
MEASUREMENT MODELS AND PRINCIPLES FOR SOURCE LOCALIZATION
3.
[SLAM] 01. "Simultaneous Localization and Mapping"
4.
Stereo Parallel Tracking and Mapping for robot localization(S-PTAM)
5.
閱讀《A Survey of Monocular Simultaneous Localization and Mapping》
6.
Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping ,2019
7.
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
8.
【OverFeat】《OverFeat:Integrated Recognition, Localization and Detection using Convolutional Networks》
9.
(Review cs231n) Spatial Localization and Detection(classification and localization)
10.
EMPNet: Neural Localisation and Mapping Using Embedded Memory Points,2019
更多相關文章...
•
W3C RDF and OWL 活動
-
W3C 教程
•
XSL-FO table-and-caption 對象
-
XSL-FO 教程
•
RxJava操作符(七)Conditional and Boolean
•
YAML 入門教程
相關標籤/搜索
localization
mesh
mapping
using
models
models&orm
2.models
action.....and
between...and
using&n
Hibernate教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
說說Python中的垃圾回收機制?
2.
螞蟻金服面試分享,阿里的offer真的不難,3位朋友全部offer
3.
Spring Boot (三十一)——自定義歡迎頁及favicon
4.
Spring Boot核心架構
5.
IDEA創建maven web工程
6.
在IDEA中利用maven創建java項目和web項目
7.
myeclipse新導入項目基本配置
8.
zkdash的安裝和配置
9.
什麼情況下會導致Python內存溢出?要如何處理?
10.
CentoOS7下vim輸入中文
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Localization and Mapping using Instance-specific Mesh Models 2019
2.
MEASUREMENT MODELS AND PRINCIPLES FOR SOURCE LOCALIZATION
3.
[SLAM] 01. "Simultaneous Localization and Mapping"
4.
Stereo Parallel Tracking and Mapping for robot localization(S-PTAM)
5.
閱讀《A Survey of Monocular Simultaneous Localization and Mapping》
6.
Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping ,2019
7.
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
8.
【OverFeat】《OverFeat:Integrated Recognition, Localization and Detection using Convolutional Networks》
9.
(Review cs231n) Spatial Localization and Detection(classification and localization)
10.
EMPNet: Neural Localisation and Mapping Using Embedded Memory Points,2019
>>更多相關文章<<