目錄html
看了很多的關於WebGL/OpenGL的資料,筆者發現這些資料在講解圖形變換的時候都講了不少的原理,而後舉出一個特別簡單的實例(座標是1.0,0.5的那種)來說解。確實一看就懂,但用到實際的場景之中就一臉懵逼了(好比地形的三維座標都是很大的數字)。因此筆者這裏結合一個具體的實例,總結下WebGL/OpenGL中,關於模型變換、視圖變換、投影變換的設置技巧。web
繪製任何複雜的場景以前,均可以先繪製出其包圍盒,能應用於包圍盒的圖形變換,基本上就能用於該場景了,所以,筆者這裏繪製一幅地形的包圍盒。它的最大最小範圍爲:chrome
//包圍盒範圍 var minX = 399589.072; var maxX = 400469.072; var minY = 3995118.062; var maxY = 3997558.062; var minZ = 732; var maxZ = 1268;
WebGL是OpenGL的子集,所以我這裏直接用WebGL的例子,可是各類接口函數跟OpenGL是很是相似的,尤爲是圖形變換的函數。編程
<!DOCTYPE html> <html lang="zh"> <head> <meta charset="utf-8" /> <title>Hello cube</title> </head> <body onload="main()"> <canvas id="webgl" width="600" height="600"> Please use a browser that supports "canvas" </canvas> <script src="lib/webgl-utils.js"></script> <script src="lib/webgl-debug.js"></script> <script src="lib/cuon-utils.js"></script> <script src="lib/cuon-matrix.js"></script> <script src="Cube.js"></script> </body> </html>
// Vertex shader program var VSHADER_SOURCE = 'attribute vec4 a_Position;\n' + 'attribute vec4 a_Color;\n' + 'uniform mat4 u_MvpMatrix;\n' + 'varying vec4 v_Color;\n' + 'void main() {\n' + ' gl_Position = u_MvpMatrix * a_Position;\n' + ' v_Color = a_Color;\n' + '}\n'; // Fragment shader program var FSHADER_SOURCE = '#ifdef GL_ES\n' + 'precision mediump float;\n' + '#endif\n' + 'varying vec4 v_Color;\n' + 'void main() {\n' + ' gl_FragColor = v_Color;\n' + '}\n'; //包圍盒範圍 var minX = 399589.072; var maxX = 400469.072; var minY = 3995118.062; var maxY = 3997558.062; var minZ = 732; var maxZ = 1268; //包圍盒中心 var cx = (minX + maxX) / 2.0; var cy = (minY + maxY) / 2.0; var cz = (minZ + maxZ) / 2.0; //當前lookAt()函數初始視點的高度 var eyeHight = 2000.0; //根據視點高度算出setPerspective()函數的合理角度 var fovy = (maxY - minY) / 2.0 / eyeHight; fovy = 180.0 / Math.PI * Math.atan(fovy) * 2; //setPerspective()遠截面 var far = 3000; // function main() { // Retrieve <canvas> element var canvas = document.getElementById('webgl'); // Get the rendering context for WebGL var gl = getWebGLContext(canvas); if (!gl) { console.log('Failed to get the rendering context for WebGL'); return; } // Initialize shaders if (!initShaders(gl, VSHADER_SOURCE, FSHADER_SOURCE)) { console.log('Failed to intialize shaders.'); return; } // Set the vertex coordinates and color var n = initVertexBuffers(gl); if (n < 0) { console.log('Failed to set the vertex information'); return; } // Get the storage location of u_MvpMatrix var u_MvpMatrix = gl.getUniformLocation(gl.program, 'u_MvpMatrix'); if (!u_MvpMatrix) { console.log('Failed to get the storage location of u_MvpMatrix'); return; } // Register the event handler var currentAngle = [0.0, 0.0]; // Current rotation angle ([x-axis, y-axis] degrees) initEventHandlers(canvas, currentAngle); // Set clear color and enable hidden surface removal gl.clearColor(0.0, 0.0, 0.0, 1.0); gl.enable(gl.DEPTH_TEST); // Start drawing var tick = function () { //setPerspective()寬高比 var aspect = canvas.width / canvas.height; // draw(gl, n, aspect, u_MvpMatrix, currentAngle); requestAnimationFrame(tick, canvas); }; tick(); } function initEventHandlers(canvas, currentAngle) { var dragging = false; // Dragging or not var lastX = -1, lastY = -1; // Last position of the mouse // Mouse is pressed canvas.onmousedown = function (ev) { var x = ev.clientX; var y = ev.clientY; // Start dragging if a moue is in <canvas> var rect = ev.target.getBoundingClientRect(); if (rect.left <= x && x < rect.right && rect.top <= y && y < rect.bottom) { lastX = x; lastY = y; dragging = true; } }; //鼠標離開時 canvas.onmouseleave = function (ev) { dragging = false; }; // Mouse is released canvas.onmouseup = function (ev) { dragging = false; }; // Mouse is moved canvas.onmousemove = function (ev) { var x = ev.clientX; var y = ev.clientY; if (dragging) { var factor = 100 / canvas.height; // The rotation ratio var dx = factor * (x - lastX); var dy = factor * (y - lastY); // Limit x-axis rotation angle to -90 to 90 degrees //currentAngle[0] = Math.max(Math.min(currentAngle[0] + dy, 90.0), -90.0); currentAngle[0] = currentAngle[0] + dy; currentAngle[1] = currentAngle[1] + dx; } lastX = x, lastY = y; }; //鼠標縮放 canvas.onmousewheel = function (event) { var lastHeight = eyeHight; if (event.wheelDelta > 0) { eyeHight = Math.max(1, eyeHight - 80); } else { eyeHight = eyeHight + 80; } far = far + eyeHight - lastHeight; }; } function draw(gl, n, aspect, u_MvpMatrix, currentAngle) { //模型矩陣 var modelMatrix = new Matrix4(); modelMatrix.rotate(currentAngle[0], 1.0, 0.0, 0.0); // Rotation around x-axis modelMatrix.rotate(currentAngle[1], 0.0, 1.0, 0.0); // Rotation around y-axis modelMatrix.translate(-cx, -cy, -cz); //視圖矩陣 var viewMatrix = new Matrix4(); viewMatrix.lookAt(0, 0, eyeHight, 0, 0, 0, 0, 1, 0); //投影矩陣 var projMatrix = new Matrix4(); projMatrix.setPerspective(fovy, aspect, 10, far); //模型視圖投影矩陣 var mvpMatrix = new Matrix4(); mvpMatrix.set(projMatrix).multiply(viewMatrix).multiply(modelMatrix); // Pass the model view projection matrix to u_MvpMatrix gl.uniformMatrix4fv(u_MvpMatrix, false, mvpMatrix.elements); // Clear color and depth buffer gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT); // Draw the cube gl.drawElements(gl.TRIANGLES, n, gl.UNSIGNED_BYTE, 0); } function initVertexBuffers(gl) { // Create a cube // v6----- v5 // /| /| // v1------v0| // | | | | // | |v7---|-|v4 // |/ |/ // v2------v3 var verticesColors = new Float32Array([ // Vertex coordinates and color maxX, maxY, maxZ, 1.0, 1.0, 1.0, // v0 White minX, maxY, maxZ, 1.0, 0.0, 1.0, // v1 Magenta minX, minY, maxZ, 1.0, 0.0, 0.0, // v2 Red maxX, minY, maxZ, 1.0, 1.0, 0.0, // v3 Yellow maxX, minY, minZ, 0.0, 1.0, 0.0, // v4 Green maxX, maxY, minZ, 0.0, 1.0, 1.0, // v5 Cyan minX, maxY, minZ, 0.0, 0.0, 1.0, // v6 Blue minX, minY, minZ, 1.0, 0.0, 1.0 // v7 Black ]); // Indices of the vertices var indices = new Uint8Array([ 0, 1, 2, 0, 2, 3, // front 0, 3, 4, 0, 4, 5, // right 0, 5, 6, 0, 6, 1, // up 1, 6, 7, 1, 7, 2, // left 7, 4, 3, 7, 3, 2, // down 4, 7, 6, 4, 6, 5 // back ]); // Create a buffer object var vertexColorBuffer = gl.createBuffer(); var indexBuffer = gl.createBuffer(); if (!vertexColorBuffer || !indexBuffer) { return -1; } // Write the vertex coordinates and color to the buffer object gl.bindBuffer(gl.ARRAY_BUFFER, vertexColorBuffer); gl.bufferData(gl.ARRAY_BUFFER, verticesColors, gl.STATIC_DRAW); var FSIZE = verticesColors.BYTES_PER_ELEMENT; // Assign the buffer object to a_Position and enable the assignment var a_Position = gl.getAttribLocation(gl.program, 'a_Position'); if (a_Position < 0) { console.log('Failed to get the storage location of a_Position'); return -1; } gl.vertexAttribPointer(a_Position, 3, gl.FLOAT, false, FSIZE * 6, 0); gl.enableVertexAttribArray(a_Position); // Assign the buffer object to a_Color and enable the assignment var a_Color = gl.getAttribLocation(gl.program, 'a_Color'); if (a_Color < 0) { console.log('Failed to get the storage location of a_Color'); return -1; } gl.vertexAttribPointer(a_Color, 3, gl.FLOAT, false, FSIZE * 6, FSIZE * 3); gl.enableVertexAttribArray(a_Color); // Write the indices to the buffer object gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer); gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, indices, gl.STATIC_DRAW); return indices.length; }
這份代碼改進《WebGL編程指南》一書裏面繪製一個簡單立方體的例子,引用的幾個JS-lib也是該書提供。本例所有源代碼地址連接爲:https://share.weiyun.com/52XmsFv ,密碼:h1lbay。
用chrome打開Cube.html,會出現一個長方體的包圍盒,還能夠用鼠標左鍵旋轉,鼠標滾輪縮放:
canvas
本例的思路是經過JS的requestAnimationFrame()函數不停的調用繪製函數draw(),同時將一些變量關聯到鼠標操做事件和draw(),達到頁面圖形變換的效果。這裏筆者就不講原理,重點講一講設置三個圖形變換的具體過程,網上已經有很是多的原理介紹了。數組
在draw()函數中設置模型矩陣:函數
//模型矩陣 var modelMatrix = new Matrix4(); modelMatrix.rotate(currentAngle[0], 1.0, 0.0, 0.0); // Rotation around x-axis modelMatrix.rotate(currentAngle[1], 0.0, 1.0, 0.0); // Rotation around y-axis modelMatrix.translate(-cx, -cy, -cz);
因爲這個包圍盒(長方體)的座標值都很是大,因此第一步須要對其作平移變換translate(-cx, -cy, -cz),cx,cy,cz就是包圍盒的中心:webgl
//包圍盒中心 var cx = (minX + maxX) / 2.0; var cy = (minY + maxY) / 2.0; var cz = (minZ + maxZ) / 2.0;
接下來是旋轉變換,數組currentAngle記錄了繞X軸和Y軸旋轉的角度,初始值爲0。配合onmousedown,onmouseup,onmousemove三個鼠標事件,將頁面鼠標X、Y方向的移動,轉換成繞X軸,Y軸的角度值,累計到currentAngle中,從而實現了三維模型隨鼠標旋轉。.net
// Mouse is moved canvas.onmousemove = function (ev) { var x = ev.clientX; var y = ev.clientY; if (dragging) { var factor = 100 / canvas.height; // The rotation ratio var dx = factor * (x - lastX); var dy = factor * (y - lastY); // Limit x-axis rotation angle to -90 to 90 degrees //currentAngle[0] = Math.max(Math.min(currentAngle[0] + dy, 90.0), -90.0); currentAngle[0] = currentAngle[0] + dy; currentAngle[1] = currentAngle[1] + dx; } lastX = x, lastY = y; };
注意模型矩陣的平移變換要放後面,須要把座標軸換到包圍盒中心,才能繞三維模型自轉。debug
經過lookAt()函數設置視圖矩陣:
//當前lookAt()函數初始視點的高度 var eyeHight = 2000.0; // … //視圖矩陣 var viewMatrix = new Matrix4(); viewMatrix.lookAt(0, 0, eyeHight, 0, 0, 0, 0, 1, 0);
視圖變換調整的是觀察者的狀態,lookAt()函數分別設置了視點、目標觀察點以及上方向。雖然能夠在任何位置去觀察三維場景的點,從而獲得渲染結果。但在實際的應用當中,這個函數設置的結果很不可思議,因此筆者設置成,觀察者站在包圍盒中心上方的位置,對準座標系原點(注意這個時候通過模型變換,包圍盒的中心點已是座標系原點了),常見的Y軸做爲上方向。這樣,視圖內不管如何都是可見的。
這裏將視點的高度設置成變量eyeHight,初始值爲2000,是一個大於0的經驗值。同時經過鼠標的滾輪事件onmousewheel()調整該值,從而實現三維模型的縮放的:
//鼠標縮放 canvas.onmousewheel = function (event) { var lastHeight = eyeHight; if (event.wheelDelta > 0) { eyeHight = Math.max(1, eyeHight - 80); } else { eyeHight = eyeHight + 80; } };
經過setPerspective()來設置投影變換:
//根據視點高度算出setPerspective()函數的合理角度 var fovy = (maxY - minY) / 2.0 / eyeHight; fovy = 180.0 / Math.PI * Math.atan(fovy) * 2; //setPerspective()遠截面 var far = 3000; //setPerspective()寬高比 var aspect = canvas.width / canvas.height; //... //投影矩陣 var projMatrix = new Matrix4(); projMatrix.setPerspective(fovy, aspect, 10, far);
前面的視圖變換已經論述了,這個模型是在中心點上方去觀察中心點,至關於視線垂直到前界面near的表面,那麼setPerspective()就能夠肯定其角度fovy了,示意圖以下:
很明顯的看出,當光線射到包圍盒的中心,包圍盒Y方向長度的一半,除以視點高,就是fovy通常的正切值。
寬高比aspect便是頁面canvas元素的寬高比。
近界面near通常設置成較近的值,可是不能太近(好比小於1),不然會影響深度判斷的精度形成頁面閃爍。《OpenGL繪製紋理,縮放相機致使紋理閃爍的解決方法gluPerspective ()》論述了這個問題。
而遠界面far也是須要跟着鼠標滾輪一塊兒變換的,不然當eyeHight變大,三維物體會逐漸離開透視變換的視錐體:
//鼠標縮放 canvas.onmousewheel = function (event) { var lastHeight = eyeHight; if (event.wheelDelta > 0) { eyeHight = Math.max(1, eyeHight - 80); } else { eyeHight = eyeHight + 80; } far = far + eyeHight - lastHeight; };
將三個矩陣都應用起來,就獲得最終的模型視圖投影矩陣。注意計算式是:投影矩陣 * 視圖矩陣 * 模型矩陣:
//模型視圖投影矩陣 var mvpMatrix = new Matrix4(); mvpMatrix.set(projMatrix).multiply(viewMatrix).multiply(modelMatrix);
本例中的三維物體隨着鼠標旋轉,是把鼠標X、Y方向的移動距離轉換成繞X軸,Y軸方向的角度來實現的。可是如何用鼠標實現繞Z軸(第三軸)旋轉呢?例如像OSG這樣的渲染引擎,是能夠用鼠標繞第三個軸旋轉的(固然操做有點費力)。這裏但願你們能批評指正下。