嘟嘟嘟
很久不寫樹剖,細節有點小問題。
這題比較好想。看到刪邊,通常就能想到離線加邊。
而後考慮若是一條邊是關鍵邊,那麼他必定是一個橋。所以首先要作的是邊雙縮點。
縮完點後圖就變成了樹。至於加邊,顯然就是把這條邊所在環上的點縮成了一個點。但若是再暴力縮點的話會超時。
實際上至關於把樹上在環中的邊的邊權改爲了0.而後詢問的時候就是樹上兩點間距離了。
因而上樹剖。
細節就是樹剖的時候不要改lca。這點我注意到了,關鍵是每一次我都沒有改鏈的頂端結點……ios
#include<cstdio> #include<iostream> #include<cmath> #include<algorithm> #include<cstring> #include<cstdlib> #include<cctype> #include<vector> #include<stack> #include<queue> #include<assert.h> #include<map> using namespace std; #define enter puts("") #define space putchar(' ') #define Mem(a, x) memset(a, x, sizeof(a)) #define In inline typedef long long ll; typedef double db; const int INF = 0x3f3f3f3f; const db eps = 1e-8; const int maxn = 3e4 + 5; const int maxm = 1e5 + 5; In ll read() { ll ans = 0; char ch = getchar(), last = ' '; while(!isdigit(ch)) last = ch, ch = getchar(); while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar(); if(last == '-') ans = -ans; return ans; } In void write(ll x) { if(x < 0) x = -x, putchar('-'); if(x >= 10) write(x / 10); putchar(x % 10 + '0'); } In void MYFILE() { #ifndef mrclr freopen("ha.in", "r", stdin); freopen("ha.out", "w", stdout); #endif } int n, m, qcnt = 0; struct edges {int x, y;}E[maxm]; struct Node { bool flg; int x, y; }q[maxm]; map<int, int> mp[maxn]; int ans[maxm], acnt = 0; struct Edge { int nxt, to; }e[maxm << 1]; int head[maxn], ecnt = -1; In void addEdge(int x, int y) { e[++ecnt] = (Edge){head[x], y}; head[x] = ecnt; } bool in[maxn]; int st[maxn], Top = 0; int dfn[maxn], low[maxn], cnt = 0; int col[maxn], ccol = 0; In void tarjan(int now, int _e) { st[++Top] = now; in[now] = 1; dfn[now] = low[now] = ++cnt; for(int i = head[now], v; ~i; i = e[i].nxt) { if(!dfn[v = e[i].to]) { tarjan(v, i); low[now] = min(low[now], low[v]); } else if((i ^ 1) ^ _e) low[now] = min(low[now], dfn[v]); } if(dfn[now] == low[now]) { int x; ++ccol; do { x = st[Top--], in[x] = 0; col[x] = ccol; }while(x ^ now); } } Edge e2[maxm << 1]; int head2[maxn], ecnt2 = -1; In void addEdge2(int x, int y) { e2[++ecnt2] = (Edge){head2[x], y}; head2[x] = ecnt2; } In void buildGraph(int now) { int u = col[now]; for(int i = head[now], v; ~i; i = e[i].nxt) if((v = col[e[i].to]) ^ u) addEdge2(u, v); } int a[maxn], siz[maxn], dep[maxn], fa[maxn], son[maxn]; In void dfs1(int now, int _f) { siz[now] = 1; for(int i = head2[now], v; ~i; i = e2[i].nxt) { if((v = e2[i].to) == _f) continue; a[v] = 1; fa[v] = now, dep[v] = dep[now] + 1; dfs1(v, now); siz[now] += siz[v]; if(!son[now] || siz[son[now]] < siz[v]) son[now] = v; } } int top[maxn], dfsx[maxn], pos[maxn]; In void dfs2(int now, int _f) { dfsx[now] = ++cnt, pos[cnt] = now; if(son[now]) top[son[now]] = top[now], dfs2(son[now], now); for(int i = head2[now], v; ~i; i = e2[i].nxt) { if((v = e2[i].to) == _f || v == son[now]) continue; top[v] = v, dfs2(v, now); } } int l[maxn << 2], r[maxn << 2], sum[maxn << 2], lzy[maxn << 2]; In void build(int L, int R, int now) { l[now] = L, r[now] = R; lzy[now] = -1; if(L == R) {sum[now] = a[pos[L]]; return;} int mid = (L + R) >> 1; build(L, mid, now << 1); build(mid + 1, R, now << 1 | 1); sum[now] = sum[now << 1] + sum[now << 1 | 1]; } In void change(int now) { sum[now] = lzy[now] = 0; } In void pushdown(int now) { if(~lzy[now]) { change(now << 1), change(now << 1 | 1); lzy[now] = -1; } } In void update(int L, int R, int now) { if(L > R) return; if(l[now] == L && r[now] == R) {change(now); return;} pushdown(now); int mid = (l[now] + r[now]) >> 1; if(R <= mid) update(L, R, now << 1); else if(L > mid) update(L, R, now << 1 | 1); else update(L, mid, now << 1), update(mid + 1, R, now << 1 | 1); sum[now] = sum[now << 1] + sum[now << 1 | 1]; } In int query(int L, int R, int now) { if(L > R) return 0; if(l[now] == L && r[now] == R) return sum[now]; pushdown(now); int mid = (l[now] + r[now]) >> 1; if(R <= mid) return query(L, R, now << 1); else if(L > mid) return query(L, R, now << 1 | 1); else return query(L, mid, now << 1) + query(mid + 1, R, now << 1 | 1); } In void update_path(int x, int y) { if(x == y) return; while(top[x] ^ top[y]) { if(dep[top[x]] < dep[top[y]]) swap(x, y); update(dfsx[top[x]], dfsx[x], 1); x = fa[top[x]]; } if(dep[x] < dep[y]) swap(x, y); update(dfsx[y] + 1, dfsx[x], 1); } In int query_path(int x, int y) { if(x == y) return 0; int ret = 0; while(top[x] ^ top[y]) { if(dep[top[x]] < dep[top[y]]) swap(x, y); ret += query(dfsx[top[x]], dfsx[x], 1); x = fa[top[x]]; } if(dep[x] < dep[y]) swap(x, y); ret += query(dfsx[y] + 1, dfsx[x], 1); return ret; } int main() { MYFILE(); Mem(head, -1), Mem(head2, -1); n = read(), m = read(); for(int i = 1; i <= m; ++i) { int x = read(), y = read(); if(x > y) swap(x, y); E[i] = (edges){x, y}; ++mp[x][y]; } int c; while(scanf("%d", &c) && ~c) { int x = read(), y = read(); if(x > y) swap(x, y); q[++qcnt] = (Node){c, x, y}; if(!c && mp[x][y]) --mp[x][y]; } for(int i = 1; i <= m; ++i) { int x = E[i].x, y = E[i].y; if(mp[x][y]) addEdge(x, y), addEdge(y, x); } for(int i = 1; i <= n; ++i) if(!dfn[i]) tarjan(i, 0); for(int i = 1; i <= n; ++i) buildGraph(i); dfs1(1, 0), cnt = 0, top[1] = 1, dfs2(1, 0); build(1, cnt, 1); for(int i = qcnt; i; --i) { int x = q[i].x, y = q[i].y; if(q[i].flg) ans[++acnt] = query_path(col[x], col[y]); else update_path(col[x], col[y]); } for(int i = acnt; i; --i) write(ans[i]), enter; return 0; }