JavaShuo
欄目
標籤
adaboost
時間 2021-01-16
欄目
C&C++
简体版
原文
原文鏈接
AdaBoost的一般流程 (1)收集數據:可以使用任何方法; (2)準備數據:依賴於所使用的若分類器類型; (3)分析數據:可以使用任意方法 (4)訓練算法:AdaBoost的大部分時間都用在訓練上,分類器將多次在同一數據集上訓練若分類器; (5)測試算法:計算分類的錯誤率; (6)使用算法:同SVM一樣,AdaBoost預測的兩個類別中的一個,如果想要把它應用到多個類的場合,那麼就像多類SVM
>>阅读原文<<
相關文章
1.
Discrete Adaboost、Real Adaboost、Gentle Adaboost、LogitBoost
2.
AdaBoost
3.
Adaboost
4.
adaboost
5.
AdaBoost & AdaRank
6.
boosting&Adaboost
7.
Haar + AdaBoost
8.
Adaboost算法
9.
Adaboost 算法
10.
Python實現Adaboost
更多相關文章...
相關標籤/搜索
adaboost
C&C++
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
windows下配置opencv
2.
HED神經網
3.
win 10+ annaconda+opencv
4.
ORB-SLAM3系列-多地圖管理
5.
opencv報錯——(mtype == CV_8U || mtype == CV_8S)
6.
OpenCV計算機視覺學習(9)——圖像直方圖 & 直方圖均衡化
7.
【超詳細】深度學習原理與算法第1篇---前饋神經網絡,感知機,BP神經網絡
8.
Python數據預處理
9.
ArcGIS網絡概述
10.
數據清洗(三)------檢查數據邏輯錯誤
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Discrete Adaboost、Real Adaboost、Gentle Adaboost、LogitBoost
2.
AdaBoost
3.
Adaboost
4.
adaboost
5.
AdaBoost & AdaRank
6.
boosting&Adaboost
7.
Haar + AdaBoost
8.
Adaboost算法
9.
Adaboost 算法
10.
Python實現Adaboost
>>更多相關文章<<