Show that if an edge (u, v) is contained in some minimum spanning tree, then it is a light edge crossing some cut of the graph.
(u, v) 屬於最小生成樹 A, 假設 cut 不影響 A 中除 (u, v) 外的其餘邊, 既 A 中只有 (u, v) 穿過該 cut,
因此 (u, v) 對該 cut 是最輕邊, 不然 (u, v) 不屬於 A.
Exercises 23.1-4
Give a simple example of a connected graph such that the set of edges { (u, v) : there exists a cut (S, V - S) such that (u, v) is a light edge crossing (S, V - S) } does not form a minimum spanning tree.
三角形三條邊權重相同的狀況, 每條邊在某種 cut 中均是最輕, 既結果中存在環, 因此不是最小生成樹.
Exercises 23.1-5
Let
e be a maximum-weight edge on some cycle of connected graph G = (V, E). Prove that there is a minimum spanning tree of G' = (V, E - {
e}) that is also a minimum spanning tree of G. That is, there is a minimum spanning tree of G that does not include
e.
由於在某些圈中 e 是權重最大的邊, 去掉 e 後圈中的頂點仍然可連通. 假設最小生成樹 A 中不包含 e, 邊集合 是 T, 一樣假設包含 e 的狀況, 邊集合爲 T', 既 T' 是 T 去除某條邊 x, 並加入 e. (最小生成樹邊數是常量 V-1)
w(T') = w(T) - w(x) + w(e),
>= w(T)
因此可知最小生成樹 A 不包含 e.
Exercises 23.1-6
Show that a graph has a unique minimum spanning tree if, for every cut of the graph, there is a unique light edge crossing the cut. Show that the converse is not true by giving a counterexample.
假設存在兩個最小生成樹 T 和 T'. 任何邊 e 屬於 T, 若是從 T 中移除 e, 則 T 變得不連通, 造成 cut (S, V - S), 根據練習 23.1-3 可知, e 是穿過 cut(S, V - S) 最輕邊. 假設邊 x 屬於 T', 並穿過 cut (S, V - S), 則 x 一樣是最輕邊. 因爲穿過 cut(S, V - S) 的最輕邊惟一. 既 e 和 x 是同一條邊. 因此 e 也屬於 T', 因爲咱們選擇 e 是任意的, 全部在 T 中的邊, 一樣在 T' 中. 既最小生成樹惟一.
將條件和結論調換則不成立, 以下.