JPG學習筆記2(附完整代碼)

  咱們已經從BMP圖中拿到了須要壓縮RGB的數據,咱們須要對原數據從RGB域轉變YCbCr域,以後對YCbCr數據進行下采樣(down sampling)。對於不須要看文章的同窗,這邊直接給出源代碼。https://github.com/Cheemion/JPEG_COMPRESSgit

                圖片引用"Compressed Image File Formats JPEG, PNG, GIF, XBM, BMP - John Miano"[1]github

1.RGB域和YCbCr域

RGB表明紅綠藍,經過3種顏色的疊加來獲得咱們看到的顏色。0-到255分別表明顏色從淺到深。ui

Y   =  0.299   * red + 0.587  *  green + 0.114  *  blue;
Cb = -0.1687 * red - 0.3313 * green + 0.5    *    blue + 128;
Cr  =  0.5       * red - 0.4187 * green -  0.0813 * blue + 128;

Y是RGB的加權平均值,稱之爲亮度(luminance)spa

Cb是B份量和亮度的差值, 稱爲Chrominance(Cb)3d

Cr是R份量和亮度的差值,稱爲Chrominance(Cr)code

如下代碼將RGB轉爲YCbCr。爲何將RGB轉爲YCbCr? 由於人眼對亮度(Y)的變化更敏感,因此我能夠對Cr和Cb進行下采樣(壓縮,好比原本1個字節表明一個pixel的數據,壓縮後用1個字節表明4個pixels的數據),儘量保留完整的Y份量。經過這樣子咱們能夠進一步的壓縮數據。component

void JPG::convertToYCbCr() {
    for(uint i = 0; i < height; i++) {
        for(uint j = 0; j < width; j++) {
            YCbCr temp = BMPData[i * width + j];
            BMPData[i * width + j].Y  =  0.299  * temp.red + 0.587 * temp.green  + 0.114  * temp.blue;
            BMPData[i * width + j].Cb = -0.1687 * temp.red - 0.3313 * temp.green + 0.5    * temp.blue + 128;
            BMPData[i * width + j].Cr =  0.5    * temp.red - 0.4187 * temp.green - 0.0813 * temp.blue + 128;
        }
    }
}

2.sampling(採樣)

 採樣一般是對連續信號進行採樣,好比下圖藍色是連續信號x(t),紅色是對信號進行採樣後獲得的信號x[n]=x(T*n), T是採樣間隔,1/T是採樣頻率。orm

 而在JPEG中,咱們是對已經離散的數據進行採樣,而且JPEG中的採樣數值是相對採樣數值。相對於最高採樣頻率的採樣數值。對象

以下左圖blog

Y(luminance)份量的水平採樣頻率(H, Horizantal sampling frequency)和垂直採樣頻率(V, vertical sampling frequency)都是4,是最高的採樣頻率。最高的採樣頻率就至關於保留原圖的Y份量,不進行下采樣。

Cb份量的水平和垂直的採樣頻率都是2,等於最高採樣頻率的一半。因此水平每2個點採樣一次,垂直每2個點採樣一次。

Cr份量的水平和垂直採樣頻率都是1,等於最高採樣頻率的1/4。因此水平和垂直每4個點採樣一個點。

3個份量的量疊加就獲得了咱們的像素的值。

  圖片引用"Compressed Image File Formats JPEG, PNG, GIF, XBM, BMP - John Miano"[1]

2.YCbCr數據在JPEG中的存儲

JPEG規定全部的數據都是以8*8的一個block(data unit)的形式進行離散餘弦變化和存儲的.能夠把這8*8的block當作是最小存儲單元。

MCU是Y,Cb,Cr的完整的block組成的可以完整還原一個範圍的色彩的最小單元。啥意思?

假設咱們的圖片是10*10的大小.

若Y,Cb,Cr的水平和垂直的採樣頻率都爲1,則原圖由4個mcu(4種顏色分別表明一個MCU)組成(每一個mcu包含1個y的block,一個cb的block,一個cr的block, 每一個mcu的大小爲8*8),邊緣空白的地方可用0替代,也能夠重複邊緣的值。

左上角那塊4*4的小block的值分別

pixel[0,0] = y[0,0] + cb[0,0] + cr[0,0]

pixel[0,1] = y[0,1] + cb[0,1] + cr[0,1]

pixel[1,0] = y[1,0] + cb[1,0] + cr[1,0]

pixel[1,1] = y[1,1] + cb[1,1] + cr[1,1]

若Y的水平和垂直採樣頻率爲2, cb和cr的採樣頻率爲1, 則原圖由1個mcu組成(大小爲16*16)。mcu中包含4個y的block(2*2),一個cb,一個cr。總共6個block,大小隻佔原來block的一半。

左上角那塊4*4的小block的值分別

pixel[0,0] = y[0,0] + cb[0,0] + cr[0,0]

pixel[0,1] = y[0,1] + cb[0,0] + cr[0,0]

pixel[1,0] = y[1,0] + cb[0,0] + cr[0,0]

pixel[1,1] = y[1,1] + cb[0,0] + cr[0,0]

 

總結:mcu大小= 垂直最大采樣值 * 水平最大采樣值, 一個mcu包含y的水平採樣值*y的垂直採樣值個的y個block(y的水平採樣爲2,垂直爲2,則一個muc有4個yblock)。其餘份量同理

1.3定義JPG class代碼

//定義Block
using
Block = int[64];
//定義YCbCr,同時這個結構用來展現存放rgb數據
struct YCbCr { union { double Y; double red; }; union { double Cb; double green; }; union { double Cr; double blue; }; };

 



struct
MCU { Block* y; Block* cb; Block* cr; };

//定義JPG類,用於壓縮圖片 class JPG { public:
//rgb轉到YCbCr
void convertToYCbCr();
   //下采樣
void subsampling();
//變化
void discreteCosineTransform();
//量化
void quantization();
//哈夫曼
void huffmanCoding();
//輸出
void output(std::string path); public:
MCU
* data;
Block
* blocks;
//BMPData存放的是bmp圖片的RGB數據 YCbCr
* BMPData; uint blockNum; //原圖的像素 uint width; uint height; //mcu 有多少個 長度是多少 uint mcuWidth; uint mcuHeight; //一個完整的muc的水平和垂直像素個數 uint mcuVerticalPixelNum; uint mcuHorizontalPixelNum; //用於subsampling // only support 1 or 2 byte YVerticalSamplingFrequency; byte YHorizontalSamplingFrequency; byte CbVerticalSamplingFrequency; byte CbHorizontalSamplingFrequency; byte CrVerticalSamplingFrequency; byte CrHorizontalSamplingFrequency; byte maxVerticalSamplingFrequency; byte maxHorizontalSamplingFrequency; public:
JPG(uint width, uint height,const RGB* const rgbs, byte YVerticalSamplingFrequency, byte YHorizontalSamplingFrequency, byte CbVerticalSamplingFrequency, byte CbHorizontalSamplingFrequency, byte CrVerticalSamplingFrequency, byte CrHorizontalSamplingFrequency ) :width(width), height(height), YVerticalSamplingFrequency(YVerticalSamplingFrequency), YHorizontalSamplingFrequency(YHorizontalSamplingFrequency), CbVerticalSamplingFrequency(CbVerticalSamplingFrequency), CbHorizontalSamplingFrequency(CbHorizontalSamplingFrequency), CrVerticalSamplingFrequency(CrVerticalSamplingFrequency), CrHorizontalSamplingFrequency(CrHorizontalSamplingFrequency) { maxHorizontalSamplingFrequency = std::max({YHorizontalSamplingFrequency, CbHorizontalSamplingFrequency, CrHorizontalSamplingFrequency}); maxVerticalSamplingFrequency = std::max({YVerticalSamplingFrequency, CbVerticalSamplingFrequency, CrVerticalSamplingFrequency}); //mcu的個數 mcuWidth = (width + (maxHorizontalSamplingFrequency * 8 - 1)) / (maxHorizontalSamplingFrequency * 8); mcuHeight = (height + (maxVerticalSamplingFrequency * 8 - 1)) / (maxVerticalSamplingFrequency * 8); mcuVerticalPixelNum = maxVerticalSamplingFrequency * 8; mcuHorizontalPixelNum = maxHorizontalSamplingFrequency * 8; //總共多少個MCU data = new MCU[mcuWidth * mcuHeight]; //一個MCU有多少個Block blockNum = (YVerticalSamplingFrequency * YHorizontalSamplingFrequency + CbVerticalSamplingFrequency * CbHorizontalSamplingFrequency + CrHorizontalSamplingFrequency * CrVerticalSamplingFrequency); //分配block內存空間 blocks = new Block[mcuHeight * mcuHeight * blockNum]; //把內存映射到對於的結構中 for (uint i = 0; i < mcuHeight; i++) { for (uint j = 0; j < mcuWidth; j++) {
data[i
* mcuWidth + j].y = &blocks[(i * mcuWidth + j) * blockNum]; data[i * mcuWidth + j].cb = data[i * mcuWidth + j].y + YVerticalSamplingFrequency * YHorizontalSamplingFrequency; data[i * mcuWidth + j].cr = data[i * mcuWidth + j].cb + CbVerticalSamplingFrequency * CbHorizontalSamplingFrequency; } } //BMP數據用於存放,bmp的原圖的數據 BMPData = new YCbCr[width * height];
//把bmp數據暫時存放在BMPdata中
for(uint i = 0; i < height; i++) { for(uint j = 0; j < width; j++) { BMPData[i * width + j].red = static_cast<double>(rgbs[i * width + j].red); BMPData[i * width + j].blue = static_cast<double>(rgbs[i * width + j].blue); BMPData[i * width + j].green = static_cast<double>(rgbs[i * width + j].green); } } } ~JPG() { delete[] data; delete[] blocks; delete[] BMPData; } };

 

 

1.6下采樣代碼

//這裏直接把左上的點 看成subsampling的點了
//也能夠取平均值
void JPG::subsampling() {
    //遍歷mcu
    for (uint i = 0; i < mcuHeight; i++) {
        for (uint j = 0; j < mcuWidth; j++) {
//拿到mcu MCU
& currentMCU = data[i * mcuWidth + j];
//每一個mcu起始的座標點
uint heightOffset = i * maxVerticalSamplingFrequency * 8; uint widthOffset = j * maxHorizontalSamplingFrequency * 8; //iterate over 每個component Y, cb cr for (uint componentID = 1; componentID <= 3; componentID++) { //遍歷block, 從muc中拿block for(uint ii = 0, yOffSet = heightOffset; ii < getVerticalSamplingFrequency(componentID); ii++, yOffSet = yOffSet + 8) { for(uint jj = 0, xOffset = widthOffset; jj < getHorizontalSamplingFrequency(componentID); jj++, xOffset = xOffset + 8) {
//拿到具體的block對象 Block
& currentBlock = currentMCU[componentID][ii * getHorizontalSamplingFrequency(componentID) + jj]; //遍歷Block every pixels 像素, 而且採樣賦值 for(uint y = 0; y < 8; y++) { for(uint x = 0; x < 8; x++) {
//獲得被採樣的那個點的座標
uint sampledY = yOffSet + y * maxVerticalSamplingFrequency / getVerticalSamplingFrequency(componentID); uint sampledX = xOffset + x * maxHorizontalSamplingFrequency / getHorizontalSamplingFrequency(componentID); //cannot find in original pictures; if(sampledX >= width || sampledY >= height) { currentBlock[y * 8 + x] = 0; } else { currentBlock[y * 8 + x] = BMPData[sampledY * width + sampledX][componentID]; } } } } } } } } }

完整代碼  https://github.com/Cheemion/JPEG_COMPRESS/tree/main/Day2

完結

祝你開心每一天。

參考資料

[1]https://github.com/Cheemion/JPEG_COMPRESS/blob/main/resource/Compressed%20Image%20File%20Formats%20JPEG%2C%20PNG%2C%20GIF%2C%20XBM%2C%20BMP%20-%20John%20Miano.pdf

相關文章
相關標籤/搜索