#參考1:https://blog.csdn.net/sushiqian/article/details/78614133
#參考2:https://blog.csdn.net/thy_2014/article/details/51659300
# coding=utf-8
import numpy as np
import matplotlib.pyplot as plt
import os
import sys
sys.path.append("/home/wit/caffe/python")
sys.path.append("/home/wit/caffe/python/caffe")
import caffe
deploy_file_name = '/home/wit/wjx/MobileNetSSD_deploy.prototxt'
model_file_name = '/home/wit/wjx/mobilenet_iter_25000.caffemodel'
test_img = "/home/wit/wjx/src.jpg"
#編寫一個函數,用於顯示各層的參數,padsize用於設置圖片間隔空隙,padval用於調整亮度
def show_data(data, padsize=1, padval=0, name = 'conv0'):
#歸一化
data -= data.min()
data /= data.max()
#根據data中圖片數量data.shape[0],計算最後輸出時每行每列圖片數n
n = int(np.ceil(np.sqrt(data.shape[0])))
# padding = ((圖片個數維度的padding),(圖片高的padding), (圖片寬的padding), ....)
padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3)
data = np.pad(data, padding, mode='constant', constant_values=(padval, padval))
# 先將padding後的data分紅n*n張圖像
data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
# 再將(n, W, n, H)變換成(n*w, n*H)
data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
plt.set_cmap('gray')
plt.imshow(data)
plt.imsave(name+'.jpg',data)
if __name__ == '__main__':
deploy_file = deploy_file_name
model_file = model_file_name
#若是是用了GPU
#caffe.set_mode_gpu()
#初始化caffe
net = caffe.Net(deploy_file, model_file, caffe.TEST)
#數據輸入預處理
# 'data'對應於deploy文件:
# input: "data"
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
# python讀取的圖片文件格式爲H×W×K,需轉化爲K×H×W
transformer.set_transpose('data', (2, 0, 1))
# python中將圖片存儲爲[0, 1]
# 若是模型輸入用的是0~255的原始格式,則須要作如下轉換
transformer.set_raw_scale('data', 255)
# caffe中圖片是BGR格式,而原始格式是RGB,因此要轉化
transformer.set_channel_swap('data', (2, 1, 0))
# 將輸入圖片格式轉化爲合適格式(與deploy文件相同)
net.blobs['data'].reshape(1, 3, 300, 300)
#讀取圖片
#參數color: True(default)是彩色圖,False是灰度圖
img = caffe.io.load_image(test_img,color=True)
# 數據輸入、預處理
net.blobs['data'].data[...] = transformer.preprocess('data', img)
# 前向迭代,即分類
out = net.forward()
# 輸出結果爲各個可能分類的機率分佈(deploy中最後一層)
predicts = out['detection_out']
print "Prob:"
print predicts
#最可能分類
predict = predicts.argmax()
print "Result:"
print predict
for layer_name, blob in net.blobs.iteritems():
print layer_name + '\t' + str(blob.data.shape)
#---------------------------- 顯示特徵圖 -------------------------------
feature = net.blobs['conv1'].data
print(feature.shape)
feature = feature.reshape(64,150,150)
show_data(feature, padsize=2, padval=0, name='conv1')