如下部分代碼是根據caffe的python接口,從一次forword中取出param和blob裏面的卷積核 和響應的卷積圖。python
import numpy as np import matplotlib.pyplot as plt import os import caffe import sys import pickle import cv2 caffe_root = '../' deployPrototxt = '/home/chenjie/louyihang/caffe/models/bvlc_reference_caffenet/deploy_louyihang.prototxt' modelFile = '/home/chenjie/louyihang/caffe/models/bvlc_reference_caffenet/caffenet_carmodel_louyihang_iter_50000.caffemodel' meanFile = 'python/caffe/imagenet/ilsvrc_2012_mean.npy' imageListFile = '/home/chenjie/DataSet/CompCars/data/train_test_split/classification/test_model431_label_start0.txt' imageBasePath = '/home/chenjie/DataSet/CompCars/data/cropped_image' resultFile = 'PredictResult.txt' #網絡初始化 def initilize(): print 'initilize ... ' sys.path.insert(0, caffe_root + 'python') caffe.set_mode_gpu() caffe.set_device(4) net = caffe.Net(deployPrototxt, modelFile,caffe.TEST) return net #取出網絡中的params和net.blobs的中的數據 def getNetDetails(image, net): # input preprocessing: 'data' is the name of the input blob == net.inputs[0] transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) transformer.set_transpose('data', (2,0,1)) transformer.set_mean('data', np.load(caffe_root + meanFile ).mean(1).mean(1)) # mean pixel transformer.set_raw_scale('data', 255) # the reference model operates on images in [0,255] range instead of [0,1] transformer.set_channel_swap('data', (2,1,0)) # the reference model has channels in BGR order instead of RGB # set net to batch size of 50 net.blobs['data'].reshape(1,3,227,227) net.blobs['data'].data[...] = transformer.preprocess('data', caffe.io.load_image(image)) out = net.forward() #網絡提取conv1的卷積核 filters = net.params['conv1'][0].data with open('FirstLayerFilter.pickle','wb') as f: pickle.dump(filters,f) vis_square(filters.transpose(0, 2, 3, 1)) #conv1的特徵圖 feat = net.blobs['conv1'].data[0, :36] with open('FirstLayerOutput.pickle','wb') as f: pickle.dump(feat,f) vis_square(feat,padval=1) pool = net.blobs['pool1'].data[0,:36] with open('pool1.pickle','wb') as f: pickle.dump(pool,f) vis_square(pool,padval=1) # 此處將卷積圖和進行顯示, def vis_square(data, padsize=1, padval=0 ): data -= data.min() data /= data.max() #讓合成圖爲方 n = int(np.ceil(np.sqrt(data.shape[0]))) padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3) data = np.pad(data, padding, mode='constant', constant_values=(padval, padval)) #合併卷積圖到一個圖像中 data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1))) data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:]) print data.shape plt.imshow(data) if __name__ == "__main__": net = initilize() testimage = '../data/MyTest/visualize_test.jpg' getNetDetails(testimage, net)
輸入的測試圖像
第一層的卷積核和卷積圖,能夠看到一些明顯的邊緣輪廓,左側是相應的卷積核
第一個Pooling層的特徵圖
網絡
第二層卷積特徵圖
第二層pooling的特徵圖,能夠看到pooling以後,對conv的特徵有部分強化,我網絡中使用的max-pooling,可是到了pooling2已經出現一些離散的塊了,已經有些抽象了,難以看出什麼東西
測試