JavaShuo
欄目
標籤
【5分鐘 Paper】Continuous Control With Deep Reinforcement Learning
時間 2021-01-02
標籤
頂會期刊論文閱讀筆記
简体版
原文
原文鏈接
論文題目:Continuous Control With Deep Reinforcement Learning 所解決的問題? 這篇文章將Deep Q-Learning運用到Deterministic Policy Gradient算法中。如果瞭解DPG的話,那這篇文章就是引入DQN改進了一下DPG的state value function。解決了DQN需要尋找maximizes actio
>>阅读原文<<
相關文章
1.
Continuous control with Deep Reinforcement Learning
2.
【5分鐘 Paper】Playing Atari with Deep Reinforcement Learning
3.
解讀continuous control with deep reinforcement learning(DDPG)
4.
【5分鐘 Paper】Asynchronous Methods for Deep Reinforcement Learning
5.
【5分鐘 Paper】Deep Reinforcement Learning with Double Q-learning
6.
【5分鐘 Paper】Dueling Network Architectures for Deep Reinforcement Learning
7.
DDPG,CONTINUOUS CONTROL WITH DEEP REINFORCEMENT LEARNING 論文閱讀
8.
Paper: Continuous Deep Q-Learning with Model-based Acceleration
9.
Paper reading: Playing Atari with Deep Reinforcement Learning
10.
PR17.10.2:Reproducibility of Benchmarked Deep Reinforcement Learning Tasks for Continuous Control
更多相關文章...
•
ASP.NET HtmlSelect Control
-
ASP.NET 教程
•
SVN分支
-
SVN 教程
•
Git五分鐘教程
•
JDK13 GA發佈:5大特性解讀
相關標籤/搜索
Deep Learning
continuous
control
reinforcement
learning
deep
paper
分鐘
5分鐘掌握
5分
PHP 7 新特性
Spring教程
MySQL教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
說說Python中的垃圾回收機制?
2.
螞蟻金服面試分享,阿里的offer真的不難,3位朋友全部offer
3.
Spring Boot (三十一)——自定義歡迎頁及favicon
4.
Spring Boot核心架構
5.
IDEA創建maven web工程
6.
在IDEA中利用maven創建java項目和web項目
7.
myeclipse新導入項目基本配置
8.
zkdash的安裝和配置
9.
什麼情況下會導致Python內存溢出?要如何處理?
10.
CentoOS7下vim輸入中文
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Continuous control with Deep Reinforcement Learning
2.
【5分鐘 Paper】Playing Atari with Deep Reinforcement Learning
3.
解讀continuous control with deep reinforcement learning(DDPG)
4.
【5分鐘 Paper】Asynchronous Methods for Deep Reinforcement Learning
5.
【5分鐘 Paper】Deep Reinforcement Learning with Double Q-learning
6.
【5分鐘 Paper】Dueling Network Architectures for Deep Reinforcement Learning
7.
DDPG,CONTINUOUS CONTROL WITH DEEP REINFORCEMENT LEARNING 論文閱讀
8.
Paper: Continuous Deep Q-Learning with Model-based Acceleration
9.
Paper reading: Playing Atari with Deep Reinforcement Learning
10.
PR17.10.2:Reproducibility of Benchmarked Deep Reinforcement Learning Tasks for Continuous Control
>>更多相關文章<<