JavaShuo
欄目
標籤
【5分鐘 Paper】Continuous Control With Deep Reinforcement Learning
時間 2021-01-02
標籤
頂會期刊論文閱讀筆記
简体版
原文
原文鏈接
論文題目:Continuous Control With Deep Reinforcement Learning 所解決的問題? 這篇文章將Deep Q-Learning運用到Deterministic Policy Gradient算法中。如果瞭解DPG的話,那這篇文章就是引入DQN改進了一下DPG的state value function。解決了DQN需要尋找maximizes actio
>>阅读原文<<
相關文章
1.
Continuous control with Deep Reinforcement Learning
2.
【5分鐘 Paper】Playing Atari with Deep Reinforcement Learning
3.
解讀continuous control with deep reinforcement learning(DDPG)
4.
【5分鐘 Paper】Asynchronous Methods for Deep Reinforcement Learning
5.
【5分鐘 Paper】Deep Reinforcement Learning with Double Q-learning
6.
【5分鐘 Paper】Dueling Network Architectures for Deep Reinforcement Learning
7.
DDPG,CONTINUOUS CONTROL WITH DEEP REINFORCEMENT LEARNING 論文閱讀
8.
Paper: Continuous Deep Q-Learning with Model-based Acceleration
9.
Paper reading: Playing Atari with Deep Reinforcement Learning
10.
PR17.10.2:Reproducibility of Benchmarked Deep Reinforcement Learning Tasks for Continuous Control
更多相關文章...
•
ASP.NET HtmlSelect Control
-
ASP.NET 教程
•
SVN分支
-
SVN 教程
•
Git五分鐘教程
•
JDK13 GA發佈:5大特性解讀
相關標籤/搜索
Deep Learning
continuous
control
reinforcement
learning
deep
paper
分鐘
5分鐘掌握
5分
PHP 7 新特性
Spring教程
MySQL教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
NLP《詞彙表示方法(六)ELMO》
2.
必看!RDS 數據庫入門一本通(附網盤鏈接)
3.
阿里雲1C2G虛擬機【99/年】羊毛黨集合啦!
4.
10秒鐘的Cat 6A網線認證儀_DSX2-5000 CH
5.
074《從零開始學Python網絡爬蟲》小記
6.
實例12--會動的地圖
7.
聽薦 | 「談笑風聲」,一次投資圈的嘗試
8.
阿里技術官手寫800多頁PDF總結《精通Java Web整合開發》
9.
設計模式之☞狀態模式實戰
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Continuous control with Deep Reinforcement Learning
2.
【5分鐘 Paper】Playing Atari with Deep Reinforcement Learning
3.
解讀continuous control with deep reinforcement learning(DDPG)
4.
【5分鐘 Paper】Asynchronous Methods for Deep Reinforcement Learning
5.
【5分鐘 Paper】Deep Reinforcement Learning with Double Q-learning
6.
【5分鐘 Paper】Dueling Network Architectures for Deep Reinforcement Learning
7.
DDPG,CONTINUOUS CONTROL WITH DEEP REINFORCEMENT LEARNING 論文閱讀
8.
Paper: Continuous Deep Q-Learning with Model-based Acceleration
9.
Paper reading: Playing Atari with Deep Reinforcement Learning
10.
PR17.10.2:Reproducibility of Benchmarked Deep Reinforcement Learning Tasks for Continuous Control
>>更多相關文章<<