JavaShuo
欄目
標籤
Paper: Continuous Deep Q-Learning with Model-based Acceleration
時間 2021-03-16
標籤
強化學習
神經網絡
機器學習
深度學習
简体版
原文
原文鏈接
|更新:2020.10.28 | [email protected] 參考博客: 1:https://zhuanlan.zhihu.com/p/28563483(Model-Based vs. Model-Free -> Dyna-1和Dyna-2 -> Expand Dyna [NAF] -> Supervised NoDyna) 2:http://www.javashuo.com/articl
>>阅读原文<<
相關文章
1.
【5分鐘 Paper】Continuous Control With Deep Reinforcement Learning
2.
Continuous control with Deep Reinforcement Learning
3.
解讀continuous control with deep reinforcement learning(DDPG)
4.
Paper reading: Playing Atari with Deep Reinforcement Learning
5.
#Paper reading#DeepInf: Social Influence Prediction with Deep Learning
6.
【5分鐘 Paper】Playing Atari with Deep Reinforcement Learning
7.
Deep Continuous Fusion (Uber'18) - 知乎
8.
DDPG,CONTINUOUS CONTROL WITH DEEP REINFORCEMENT LEARNING 論文閱讀
9.
Symmetrical Network Acceleration with EBS 12
10.
Paper Reading:Wide & Deep Learning for Recommender Systems
更多相關文章...
•
XSLT
元素
-
XSLT 教程
•
Maven 項目文檔
-
Maven教程
•
爲了進字節跳動,我精選了29道Java經典算法題,帶詳細講解
•
算法總結-股票買賣
相關標籤/搜索
qlearning
continuous
acceleration
deep
paper
with+this
with...connect
with...as
by...with
Deep Learning
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
《給初學者的Windows Vista的補遺手冊》之074
2.
CentoOS7.5下編譯suricata-5.0.3及簡單使用
3.
快速搭建網站
4.
使用u^2net打造屬於自己的remove-the-background
5.
3.1.7 spark體系之分佈式計算-scala編程-scala中模式匹配match
6.
小Demo大知識-通過控制Button移動來學習Android座標
7.
maya檢查和刪除多重面
8.
Java大數據:大數據開發必須掌握的四種數據庫
9.
強烈推薦幾款IDEA插件,12款小白神器
10.
數字孿生體技術白皮書 附下載地址
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
【5分鐘 Paper】Continuous Control With Deep Reinforcement Learning
2.
Continuous control with Deep Reinforcement Learning
3.
解讀continuous control with deep reinforcement learning(DDPG)
4.
Paper reading: Playing Atari with Deep Reinforcement Learning
5.
#Paper reading#DeepInf: Social Influence Prediction with Deep Learning
6.
【5分鐘 Paper】Playing Atari with Deep Reinforcement Learning
7.
Deep Continuous Fusion (Uber'18) - 知乎
8.
DDPG,CONTINUOUS CONTROL WITH DEEP REINFORCEMENT LEARNING 論文閱讀
9.
Symmetrical Network Acceleration with EBS 12
10.
Paper Reading:Wide & Deep Learning for Recommender Systems
>>更多相關文章<<