ConcurrentHashMap是1.5引入的用於高併發狀況下的檢索和更新。本文是基於jdk8的代碼進行分析的,從put方法入手,來看下該結構是如何實現的。java
final V putVal(K key, V value, boolean onlyIfAbsent) { if (key == null || value == null) throw new NullPointerException(); //計算hash int hash = spread(key.hashCode()); //默認就是0,表明鏈表的長度,若是key不碰撞都是0, int binCount = 0; //常見的自旋結構 for (Node<K,V>[] tab = table;;) { Node<K,V> f; int n, i, fh; //延遲加載tab,用來放Node的數組 if (tab == null || (n = tab.length) == 0) tab = initTable(); //i的位置沒有值 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { //經過cas將i位置設定爲新node if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value, null))) break; // no lock when adding to empty bin } //正在擴容的移動階段 else if ((fh = f.hash) == MOVED) tab = helpTransfer(tab, f); //i位置已經有值了 else { V oldVal = null; synchronized (f) { if (tabAt(tab, i) == f) { if (fh >= 0) { binCount = 1; for (Node<K,V> e = f;; ++binCount) { K ek; //hash和key都相同才認爲是相同的key,而後根據onlyIfAbsent的值來決定是否覆蓋值 if (e.hash == hash && ((ek = e.key) == key || (ek != null && key.equals(ek)))) { oldVal = e.val; if (!onlyIfAbsent) e.val = value; break; } Node<K,V> pred = e; //鏈表尾部添加新node if ((e = e.next) == null) { pred.next = new Node<K,V>(hash, key, value, null); break; } } } //紅黑樹結構 else if (f instanceof TreeBin) { Node<K,V> p; binCount = 2; //將k,v添加到樹中 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, value)) != null) { oldVal = p.val; if (!onlyIfAbsent) p.val = value; } } } } if (binCount != 0) { //鏈表長度大於等於8,就將其轉爲紅黑樹結構 if (binCount >= TREEIFY_THRESHOLD) treeifyBin(tab, i); if (oldVal != null) return oldVal; break; } } } //計數及擴容的代碼 addCount(1L, binCount); return null; }
private final Node<K,V>[] initTable() { Node<K,V>[] tab; int sc; while ((tab = table) == null || tab.length == 0) { //sizeCtl 是tab擴容和初始化的控制器,默認是0,能夠進行操做,負的話就表明正在初始化或擴容,由於能夠多個線程擴容,-N 就表明n個線程正在擴容 if ((sc = sizeCtl) < 0) Thread.yield(); // lost initialization race; just spin //CAS 設置 sizectl 設爲-1,失敗會跳過 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { try { if ((tab = table) == null || tab.length == 0) { int n = (sc > 0) ? sc : DEFAULT_CAPACITY; @SuppressWarnings("unchecked") Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n]; table = tab = nt; //sc 爲tab長度的 3/4 sc = n - (n >>> 2); } } finally { //此時sizeCtl 做爲長度的3/4 ,後面做爲是否須要擴容的一個判斷條件 sizeCtl = sc; } break; } } return tab; }
final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) { Node<K,V>[] nextTab; int sc; //ForwardingNode 是一個空的節點,沒有val,是當transfer時插入到頭那作標識的,因此這裏表明f 正處於transfer 狀態。 if (tab != null && (f instanceof ForwardingNode) && (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) { //根據tab的長度生成個印記戳 int rs = resizeStamp(tab.length); while (nextTab == nextTable && table == tab && (sc = sizeCtl) < 0) { if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS || transferIndex <= 0) break; if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) { //具體轉移的代碼,transfer的入口主要是在addCount裏面,該方法是協助transfer的入口。 transfer(tab, nextTab); break; } } return nextTab; } return table; }
private final void addCount(long x, int check) { CounterCell[] as; long b, s; if ((as = counterCells) != null || //計數器增長x,s爲最終長度 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) { CounterCell a; long v; int m; boolean uncontended = true; if (as == null || (m = as.length - 1) < 0 || (a = as[ThreadLocalRandom.getProbe() & m]) == null || !(uncontended = U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) { fullAddCount(x, uncontended); return; } if (check <= 1) return; s = sumCount(); } //須要檢查是否要擴容,默認check爲0 ,每次都檢查 if (check >= 0) { Node<K,V>[] tab, nt; int n, sc; //長度大於sizeCtl,前面說了是長度的是四分之三,而且小於最大容量2^30 //n 爲數組長度 while (s >= (long)(sc = sizeCtl) && (tab = table) != null && (n = tab.length) < MAXIMUM_CAPACITY) { //待擴容列表長度n的校驗戳 int rs = resizeStamp(n); //正在擴容 if (sc < 0) { // 待擴容長度n的校驗戳不一致 || 長度+1了,其餘線程擴容完了 || 超過最大的resizers || 擴容完成(transfer裏)||擴容完成(transfer裏) if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS || (nt = nextTable) == null || transferIndex <= 0) break; //添加幫助擴容線程 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) //擴容 transfer(tab, nt); } //將計算出來的校驗戳變爲sizectl的高位,2是低位,保證了上面 sc >>> RESIZE_STAMP_SHIFT) != rs 的能夠校驗長度不變化 else if (U.compareAndSwapInt(this, SIZECTL, sc, (rs << RESIZE_STAMP_SHIFT) + 2)) transfer(tab, null); s = sumCount(); } } }
//擴容方法,該方法也比較長 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) { int n = tab.length, stride; //stride 是每一個線程可處理的桶的數量,後面決定了nextBound的值 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE) stride = MIN_TRANSFER_STRIDE; // subdivide range //初始化nextTab if (nextTab == null) { // initiating try { @SuppressWarnings("unchecked") Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1]; //擴容爲2倍 nextTab = nt; //OOM } catch (Throwable ex) { // try to cope with OOME sizeCtl = Integer.MAX_VALUE; return; } nextTable = nextTab; //從後向前遍歷,<=0時遍歷擴容完成 transferIndex = n; } int nextn = nextTab.length; //table裏面某個位置的首節點,表明移動了,會被看成判斷條件 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab); boolean advance = true; boolean finishing = false; // to ensure sweep before committing nextTab //bound 是邊界 for (int i = 0, bound = 0;;) { Node<K,V> f; int fh; //獲取該線程處理的桶的邊界 以及負責向前推動下標i //advance 是上面操做的控制器 while (advance) { int nextIndex, nextBound; // 向前推動下標 if (--i >= bound || finishing) advance = false; else if ((nextIndex = transferIndex) <= 0) { i = -1; advance = false; } //當前參與擴容的線程給nextindex賦值,成功的話,bound設置爲nextBound i=transferIndex-1,跳出循環 else if (U.compareAndSwapInt (this, TRANSFERINDEX, nextIndex, nextBound = (nextIndex > stride ? nextIndex - stride : 0))) { bound = nextBound; i = nextIndex - 1; advance = false; } } // i=-1 是上面transferIndex<=0的條件,任務執行完畢 if (i < 0 || i >= n || i + n >= nextn) { int sc; if (finishing) { nextTable = null; table = nextTab; sizeCtl = (n << 1) - (n >>> 1); return; } if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) { if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT) return; finishing = advance = true; //配合上面的>=n 從新計算table和sizeCtl i = n; // recheck before commit } } //佔位 else if ((f = tabAt(tab, i)) == null) advance = casTabAt(tab, i, null, fwd); else if ((fh = f.hash) == MOVED) //該位置已經處理過,從新計算i bound等,繼續向前推動 advance = true; // already processed else { //f是當前i位置的節點 synchronized (f) { if (tabAt(tab, i) == f) { Node<K,V> ln, hn; //fh是f的hash值 //鏈表操做 if (fh >= 0) { int runBit = fh & n; Node<K,V> lastRun = f; //找到鏈表中最後一個hash 相同的節點,就是最後一個節點 for (Node<K,V> p = f.next; p != null; p = p.next) { int b = p.hash & n; if (b != runBit) { runBit = b; lastRun = p; } } //ln 猜想是low node hn認爲是 high node ,由於會拆出來兩個鏈表 // hash&n ==0 一個判斷標準,符合這樣的,就做爲ln,不符合的做爲hn if (runBit == 0) { ln = lastRun; hn = null; } else { hn = lastRun; ln = null; } //遍歷全部節點,符合 hash & n == 0的 就放到ln的前面,不符合的就放到hn的前面 for (Node<K,V> p = f; p != lastRun; p = p.next) { int ph = p.hash; K pk = p.key; V pv = p.val; if ((ph & n) == 0) ln = new Node<K,V>(ph, pk, pv, ln); else hn = new Node<K,V>(ph, pk, pv, hn); } //將ln 放到nexttab的i位置,high 放到i+n位置 setTabAt(nextTab, i, ln); setTabAt(nextTab, i + n, hn); //原tab 的i位置 放fwd佔位 setTabAt(tab, i, fwd); //繼續往下推動 advance = true; } //紅黑樹操做 else if (f instanceof TreeBin) { TreeBin<K,V> t = (TreeBin<K,V>)f; TreeNode<K,V> lo = null, loTail = null; TreeNode<K,V> hi = null, hiTail = null; int lc = 0, hc = 0; for (Node<K,V> e = t.first; e != null; e = e.next) { int h = e.hash; TreeNode<K,V> p = new TreeNode<K,V> (h, e.key, e.val, null, null); if ((h & n) == 0) { if ((p.prev = loTail) == null) lo = p; else loTail.next = p; loTail = p; ++lc; } else { if ((p.prev = hiTail) == null) hi = p; else hiTail.next = p; hiTail = p; ++hc; } } ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) : (hc != 0) ? new TreeBin<K,V>(lo) : t; hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) : (lc != 0) ? new TreeBin<K,V>(hi) : t; setTabAt(nextTab, i, ln); setTabAt(nextTab, i + n, hn); setTabAt(tab, i, fwd); advance = true; } } } } } }