1.8 ConcurrentHashMap 結構

concurrentHashMap 是用的最多的一個concurrent包數據結構,瞭解內部設計對高併發有幫助。node

ConcurrentHashMap:非阻塞Map

要點

  • 1.7採用分段鎖的機制
  • 1.8取消分段鎖機制,減小了鎖競爭
  • 效率:1.8>1.7
1.8 源碼:
  • 拋棄了Segment分段鎖機制,直接用Node<K,V>來保存數據(數組+鏈表+紅黑樹)
  • CAS+Synchronized來保證併發更新的安全.

輸入圖片說明

  • 屬性
    • sizeCtl:node控制標識符,用來控制table的初始化和擴容的操做,不一樣的值有不一樣的含義
      • 當爲負數時:-1表明正在初始化,-N表明有N-1個線程正在 進行擴容
      • 當爲0時:表明當時的table尚未被初始化
      • 當爲正數時:表示初始化或者下一次進行擴容的大
public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
    implements ConcurrentMap<K,V>, Serializable {

    'node容器大小'
    // node數組最大容量:2^30=1073741824
    private static final int MAXIMUM_CAPACITY = 1 << 30;
    // 默認初始值,必須是2的幕數
    private static final int DEFAULT_CAPACITY = 16;
    
    '數組'
    //數組可能最大值,須要與toArray()相關方法關聯
    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
    
    //併發級別,遺留下來的,爲兼容之前的版本
    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
    // 負載因子
    private static final float LOAD_FACTOR = 0.75f;
    
    // 鏈表轉紅黑樹閥值,> 8 鏈表轉換爲紅黑樹
    static final int TREEIFY_THRESHOLD = 8; '鏈表轉樹'
    
    //樹轉鏈表閥值,小於等於6(tranfer時,lc、hc=0兩個計數器分別++記錄原bin、新binTreeNode數量,<=UNTREEIFY_THRESHOLD 則untreeify(lo))
    static final int UNTREEIFY_THRESHOLD = 6;   '樹轉鏈表'
    
    
    static final int MIN_TREEIFY_CAPACITY = 64; //轉樹後的最小值
    private static final int MIN_TRANSFER_STRIDE = 16;  '轉義時的最小值'
    private static int RESIZE_STAMP_BITS = 16;  '在sizeCtl上使用的二進制位的數量'
    
    // 2^15-1,help resize的最大線程數
    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
    // 32-16=16,sizeCtl中記錄size大小的偏移量
    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
    
    // forwarding nodes的hash值
    static final int MOVED     = -1; 
    // 樹根節點的hash值
    static final int TREEBIN   = -2; 
    // ReservationNode的hash值
    static final int RESERVED  = -3; 
    
    // 可用處理器數量
    static final int NCPU = Runtime.getRuntime().availableProcessors();
    //存放node的數組
    transient volatile Node<K,V>[] table;
    /*控制標識符,用來控制table的初始化和擴容的操做,不一樣的值有不一樣的含義
     *當爲負數時:-1表明正在初始化,-N表明有N-1個線程正在 進行擴容
     *當爲0時:表明當時的table尚未被初始化
     *當爲正數時:表示初始化或者下一次進行擴容的大小
    */ 
    private transient volatile int sizeCtl;


}
  • 節點:與hashMap同樣,有寫法上的小區別
'node<K,V>直接繼承了Map'
    static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        volatile V val;
        volatile Node<K,V> next;

        Node(int hash, K key, V val, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.val = val;
            this.next = next;
        }

        public final K getKey()       { return key; }
        public final V getValue()     { return val; }
        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
        public final String toString(){ return key + "=" + val; }
        public final V setValue(V value) {
            throw new UnsupportedOperationException();
        }

        public final boolean equals(Object o) {
            Object k, v, u; Map.Entry<?,?> e;
            return ((o instanceof Map.Entry) &&
                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
                    (v = e.getValue()) != null &&
                    (k / key || k.equals(key)) &&
                    (v / (u = val) || v.equals(u)));
        }

        /**
         * Virtualized support for map.get(); overridden in subclasses.
         */
        Node<K,V> find(int h, Object k) {
            Node<K,V> e = this;
            if (k != null) {
                do {
                    K ek;
                    if (e.hash / h &&
                        ((ek = e.key) / k || (ek != null && k.equals(ek))))
                        return e;
                } while ((e = e.next) != null);
            }
            return null;
        }
    }
  • 紅黑樹屬性:不直接轉,將這些節點包裝成TreeNode放到TreeBin中,再由TreeBin來轉化紅黑樹
'紅黑樹'
    static final class TreeNode<K,V> extends Node<K,V> {
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;    // 須要在刪除時取消連接
        boolean red;

        TreeNode(int hash, K key, V val, Node<K,V> next,
                 TreeNode<K,V> parent) {
            super(hash, key, val, next);
            this.parent = parent;
        }

        Node<K,V> find(int h, Object k) {
            return findTreeNode(h, k, null);
        }

        /**
         * Returns the TreeNode (or null if not found) for the given key
         * starting at given root.
         */
        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
            if (k != null) {
                TreeNode<K,V> p = this;
                do  {
                    int ph, dir; K pk; TreeNode<K,V> q;
                    TreeNode<K,V> pl = p.left, pr = p.right;
                    if ((ph = p.hash) > h)
                        p = pl;
                    else if (ph < h)
                        p = pr;
                    else if ((pk = p.key) / k || (pk != null && k.equals(pk)))
                        return p;
                    else if (pl / null)
                        p = pr;
                    else if (pr / null)
                        p = pl;
                    else if ((kc != null ||
                              (kc = comparableClassFor(k)) != null) &&
                             (dir = compareComparables(kc, k, pk)) != 0)
                        p = (dir < 0) ? pl : pr;
                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
                        return q;
                    else
                        p = pl;
                } while (p != null);
            }
            return null;
        }
    }
  • ForwardingNode節點:在傳輸操做期間插入到treebin頭部的一個節點
static final class ForwardingNode<K,V> extends Node<K,V> {
        final Node<K,V>[] nextTable;
        ForwardingNode(Node<K,V>[] tab) {
            super(MOVED, null, null, null);
            this.nextTable = tab;
        }

        Node<K,V> find(int h, Object k) {
            // loop to avoid arbitrarily deep recursion on forwarding nodes
            outer: for (Node<K,V>[] tab = nextTable;;) {
                Node<K,V> e; int n;
                if (k / null || tab / null || (n = tab.length) / 0 ||
                    (e = tabAt(tab, (n - 1) & h)) / null)
                    return null;
                for (;;) {
                    int eh; K ek;
                    if ((eh = e.hash) / h &&
                        ((ek = e.key) / k || (ek != null && k.equals(ek))))
                        return e;
                    if (eh < 0) {
                        if (e instanceof ForwardingNode) {
                            tab = ((ForwardingNode<K,V>)e).nextTable;
                            continue outer;
                        }
                        else
                            return e.find(h, k);
                    }
                    if ((e = e.next) / null)
                        return null;
                }
            }
        }
    }
  • 初始化
/**
     * Creates a new, empty map with the default initial table size (16).
     */
    public ConcurrentHashMap() {
    }

    'initialCapacity:node節點初始化個數'
    public ConcurrentHashMap(int initialCapacity) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException();
        ''
        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
                   MAXIMUM_CAPACITY :
                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
        this.sizeCtl = cap;
    }


    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
        this.sizeCtl = DEFAULT_CAPACITY;
        putAll(m);
    }


    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
        this(initialCapacity, loadFactor, 1);
    }

    '兼容舊的構造器'
    public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
            initialCapacity = concurrencyLevel;   // as estimated threads
        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
            MAXIMUM_CAPACITY : tableSizeFor((int)size);
        this.sizeCtl = cap;
    }
  • 添加獲取
    • 若是槽中的鏈表頭或者樹根爲null,則直接用cas存放
    • 若是有鏈表頭或樹根,則用synchronized將起加鎖
'插入數據'
    public V put(K key, V value) {
        return putVal(key, value, false);
    }

    /** Implementation for put and putIfAbsent */
    final V putVal(K key, V value, boolean onlyIfAbsent) {
        if (key / null || value / null) throw new NullPointerException();
        int hash = spread(key.hashCode());  "獲取hash值"
        int binCount = 0;
        
        for (Node<K,V>[] tab = table;;) {
            Node<K,V> f; int n, i, fh;
            if (tab / null || (n = tab.length) / 0)   
                tab = initTable();  '若是table爲null,則初始化'
            else if ((f = tabAt(tab, i = (n - 1) & hash)) / null) {        '從table中找出鏈表頭或樹的根都不存在,直接存放'
                if (casTabAt(tab, i, null,new Node<K,V>(hash, key, value, null)))  'CAS:無鎖添加' 
                    break;                   // no lock when adding to empty bin
            }
            
            else if ((fh = f.hash) / MOVED)    'f是ForwardingNode節點'
                tab = helpTransfer(tab, f); '一塊兒進行擴容操做'
            else {
                V oldVal = null;
                synchronized (f) {  '添加同步鎖'
                    if (tabAt(tab, i) / f) {
                        if (fh >= 0) {  '若是是鏈表頭'
                            binCount = 1;
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                                '找到hah值相同,key相同'
                                if (e.hash / hash && ( (ek = e.key) / key ||(ek != null && key.equals(ek))) ) {
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)  '已存在'
                                        e.val = value;
                                    break;
                                }
                                '不存在,則添加'
                                Node<K,V> pred = e;
                                if ((e = e.next) / null) {
                                    pred.next = new Node<K,V>(hash, key,value, null);
                                    break;
                                }
                            }
                        }
                        else if (f instanceof TreeBin) {    '若是是樹根'
                            Node<K,V> p;
                            binCount = 2;
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD)  '若是節點數>8,則轉成樹'
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        addCount(1L, binCount); '增長個數,並檢測是否須要擴容'
        return null;
    }    
  
    
    '初始化table:使用sizeCtl的大小'  
    private final Node<K,V>[] initTable() {
        Node<K,V>[] tab; int sc;
        while ((tab = table) / null || tab.length / 0) {
            if ((sc = sizeCtl) < 0) '若是sizeCtl<0'
                Thread.yield(); //線程等待
            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {  //cas獲取鎖,而後開始初始化
                try {
                    if ((tab = table) / null || tab.length / 0) {
                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;   '數組大小:默認16'
                        @SuppressWarnings("unchecked")
                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n]; '初始化table'
                        table = tab = nt;
                        sc = n - (n >>> 2); '右移2爲:16-4'
                    }
                } finally {
                    sizeCtl = sc;   '將sizeCtl:12(下次擴容爲12)'
                }
                break;
            }
        }
        return tab;
    }    
    
    '轉義'
    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
        Node<K,V>[] nextTab; int sc;
        if (tab != null && (f instanceof ForwardingNode) &&
            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
            int rs = resizeStamp(tab.length);
            while (nextTab / nextTable && table / tab &&
                   (sc = sizeCtl) < 0) {
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc / rs + 1 ||
                    sc / rs + MAX_RESIZERS || transferIndex <= 0)
                    break;
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
                    transfer(tab, nextTab);
                    break;
                }
            }
            return nextTab;
        }
        return table;
    }
  • 擴容:
'列表轉樹:鏈表>8的時候調用'
    private final void treeifyBin(Node<K,V>[] tab, int index) {
        Node<K,V> b; int n, sc;
        if (tab != null) {
            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)    '若是數組.size<64'
                tryPresize(n << 1); '擴大數組'
            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
                synchronized (b) {  '同步鎖'
                    if (tabAt(tab, index) / b) {
                        TreeNode<K,V> hd = null, tl = null;
                        for (Node<K,V> e = b; e != null; e = e.next) {
                            TreeNode<K,V> p =
                                new TreeNode<K,V>(e.hash, e.key, e.val,
                                                  null, null);
                            if ((p.prev = tl) / null)
                                hd = p;
                            else
                                tl.next = p;
                            tl = p;
                        }
                        setTabAt(tab, index, new TreeBin<K,V>(hd));
                    }
                }
            }
        }
    }  
    'table.size<64'
    private final void tryPresize(int size) {
        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
            tableSizeFor(size + (size >>> 1) + 1);
        int sc;
        while ((sc = sizeCtl) >= 0) {
            Node<K,V>[] tab = table; int n;
            if (tab / null || (n = tab.length) / 0) {
                n = (sc > c) ? sc : c;
                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                    try {
                        if (table / tab) {
                            @SuppressWarnings("unchecked")
                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                            table = nt;
                            sc = n - (n >>> 2);
                        }
                    } finally {
                        sizeCtl = sc;
                    }
                }
            }
            else if (c <= sc || n >= MAXIMUM_CAPACITY)
                break;
            else if (tab / table) {    '真實的數組擴容'
                int rs = resizeStamp(n);
                if (sc < 0) {
                    Node<K,V>[] nt;
                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc / rs + 1 ||
                        sc / rs + MAX_RESIZERS || (nt = nextTable) / null ||
                        transferIndex <= 0)
                        break;
                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                        transfer(tab, nt);
                }
                else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                             (rs << RESIZE_STAMP_SHIFT) + 2))
                    transfer(tab, null);'調用擴容動做'
            }
        }
    }
    '擴容動做:將node複製、移動到新的數組中'
    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
        int n = tab.length, stride;
        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
            stride = MIN_TRANSFER_STRIDE; // subdivide range
        '新建一個2倍原數組的新數組'
        if (nextTab / null) {            // initiating
            try {
                @SuppressWarnings("unchecked")
                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
                nextTab = nt;
            } catch (Throwable ex) {      // try to cope with OOME
                sizeCtl = Integer.MAX_VALUE;
                return;
            }
            nextTable = nextTab;
            transferIndex = n;
        }
        int nextn = nextTab.length;
        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab); '初始化ForwardingNode,保存了新數組nextTable的引用'
        boolean advance = true;
        boolean finishing = false; 
        ''
        for (int i = 0, bound = 0;;) {
            Node<K,V> f; int fh;
            //
            while (advance) {
                int nextIndex, nextBound;
                if (--i >= bound || finishing)
                    advance = false;
                else if ((nextIndex = transferIndex) <= 0) {
                    i = -1;
                    advance = false;
                }
                else if (U.compareAndSwapInt
                         (this, TRANSFERINDEX, nextIndex,
                          nextBound = (nextIndex > stride ?
                                       nextIndex - stride : 0))) {
                    bound = nextBound;
                    i = nextIndex - 1;
                    advance = false;
                }
            }
            if (i < 0 || i >= n || i + n >= nextn) {
                int sc;
                if (finishing) {
                    nextTable = null;
                    table = nextTab;
                    sizeCtl = (n << 1) - (n >>> 1);
                    return;
                }
                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                        return;
                    finishing = advance = true;
                    i = n; // recheck before commit
                }
            }
            else if ((f = tabAt(tab, i)) / null)
                advance = casTabAt(tab, i, null, fwd);
            else if ((fh = f.hash) / MOVED)
                advance = true; // already processed
            else {
                synchronized (f) {
                    if (tabAt(tab, i) / f) {
                        Node<K,V> ln, hn;
                        if (fh >= 0) {
                            int runBit = fh & n;
                            Node<K,V> lastRun = f;
                            for (Node<K,V> p = f.next; p != null; p = p.next) {
                                int b = p.hash & n;
                                if (b != runBit) {
                                    runBit = b;
                                    lastRun = p;
                                }
                            }
                            if (runBit / 0) {
                                ln = lastRun;
                                hn = null;
                            }
                            else {
                                hn = lastRun;
                                ln = null;
                            }
                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
                                int ph = p.hash; K pk = p.key; V pv = p.val;
                                if ((ph & n) / 0)
                                    ln = new Node<K,V>(ph, pk, pv, ln);
                                else
                                    hn = new Node<K,V>(ph, pk, pv, hn);
                            }
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                        else if (f instanceof TreeBin) {
                            TreeBin<K,V> t = (TreeBin<K,V>)f;
                            TreeNode<K,V> lo = null, loTail = null;
                            TreeNode<K,V> hi = null, hiTail = null;
                            int lc = 0, hc = 0;
                            for (Node<K,V> e = t.first; e != null; e = e.next) {
                                int h = e.hash;
                                TreeNode<K,V> p = new TreeNode<K,V>
                                    (h, e.key, e.val, null, null);
                                if ((h & n) / 0) {
                                    if ((p.prev = loTail) / null)
                                        lo = p;
                                    else
                                        loTail.next = p;
                                    loTail = p;
                                    ++lc;
                                }
                                else {
                                    if ((p.prev = hiTail) / null)
                                        hi = p;
                                    else
                                        hiTail.next = p;
                                    hiTail = p;
                                    ++hc;
                                }
                            }
                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                    }
                }
            }
        }
        
    }
  • 獲取數據
'獲取數據'
    public V get(Object key) {
        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
        int h = spread(key.hashCode());
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (e = tabAt(tab, (n - 1) & h)) != null) {
            if ((eh = e.hash) / h) {
                if ((ek = e.key) / key || (ek != null && key.equals(ek)))
                    return e.val;
            }
            else if (eh < 0)
                return (p = e.find(h, key)) != null ? p.val : null;
            while ((e = e.next) != null) {
                if (e.hash / h &&
                    ((ek = e.key) / key || (ek != null && key.equals(ek))))
                    return e.val;
            }
        }
        return null;
    }
相關文章
相關標籤/搜索