視頻學習網絡
生成式對抗網絡基礎app
生成式對抗網絡前沿框架
生成式對抗網絡實踐dom
代碼練習ide
生成式對抗網絡(double moon)函數
一個簡單的 GAN學習
生成器和判別器的結構都很是簡單,具體以下:測試
生成器生成的是樣本,即一組座標(x,y),咱們但願生成器可以由一組任意的 32組噪聲生成座標(x,y)處於兩個半月形狀上。字體
判別器輸入的是一組座標(x,y),最後一層是sigmoid函數,是一個範圍在(0,1)間的數,即樣本爲真或者假的置信度。若是輸入的是真樣本,獲得的結果儘可能接近1;若是輸入的是假樣本,獲得的結果儘可能接近0。優化
import torch.nn as nn z_dim = 32 hidden_dim = 128 # 定義生成器 net_G = nn.Sequential( nn.Linear(z_dim,hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, 2)) # 定義判別器 net_D = nn.Sequential( nn.Linear(2,hidden_dim), nn.ReLU(), nn.Linear(hidden_dim,1), nn.Sigmoid()) # 網絡放到 GPU 上 net_G = net_G.to(device) net_D = net_D.to(device) # 定義網絡的優化器 optimizer_G = torch.optim.Adam(net_G.parameters(),lr=0.0001) optimizer_D = torch.optim.Adam(net_D.parameters(),lr=0.0001)
把學習率修改成 0.001,batch_size改大到250(loss下降,改善效果)
# 定義網絡的優化器 optimizer_G = torch.optim.Adam(net_G.parameters(),lr=0.001) optimizer_D = torch.optim.Adam(net_D.parameters(),lr=0.001) batch_size = 250 loss_D_epoch = [] loss_G_epoch = [] for e in range(nb_epochs): np.random.shuffle(X) real_samples = torch.from_numpy(X).type(torch.FloatTensor) loss_G = 0 loss_D = 0 for t, real_batch in enumerate(real_samples.split(batch_size)): # 固定生成器G,改進判別器D # 使用normal_()函數生成一組隨機噪聲,輸入G獲得一組樣本 z = torch.empty(batch_size,z_dim).normal_().to(device) fake_batch = net_G(z) # 將真、假樣本分別輸入判別器,獲得結果 D_scores_on_real = net_D(real_batch.to(device)) D_scores_on_fake = net_D(fake_batch) # 優化過程當中,假樣本的score會愈來愈小,真樣本的score會愈來愈大,下面 loss 的定義恰好符合這一規律, # 要保證loss愈來愈小,真樣本的score前面要加負號 # 要保證loss愈來愈小,假樣本的score前面是正號(負負得正) loss = -torch.mean(torch.log(1-D_scores_on_fake) + torch.log(D_scores_on_real)) # 梯度清零 optimizer_D.zero_grad() # 反向傳播優化 loss.backward() # 更新所有參數 optimizer_D.step() loss_D += loss # 固定判別器,改進生成器 # 生成一組隨機噪聲,輸入生成器獲得一組假樣本 z = torch.empty(batch_size,z_dim).normal_().to(device) fake_batch = net_G(z) # 假樣本輸入判別器獲得 score D_scores_on_fake = net_D(fake_batch) # 咱們但願假樣本可以騙過生成器,獲得較高的分數,下面的 loss 定義也符合這一規律 # 要保證 loss 愈來愈小,假樣本的前面要加負號 loss = -torch.mean(torch.log(D_scores_on_fake)) optimizer_G.zero_grad() loss.backward() optimizer_G.step() loss_G += loss if e % 50 ==0: print(f'\n Epoch {e} , D loss: {loss_D}, G loss: {loss_G}') loss_D_epoch.append(loss_D) loss_G_epoch.append(loss_G)
Epoch 950 , D loss: 11.052919387817383, G loss: 5.581031799316406
利用噪聲生成一組數據觀察一下:
z = torch.empty(n_samples,z_dim).normal_().to(device)
fake_samples = net_G(z)
fake_data = fake_samples.cpu().data.numpy()
fig, ax = plt.subplots(1, 1, facecolor='#4B6EA9')
all_data = np.concatenate((X,fake_data),axis=0)
Y2 = np.concatenate((np.ones(n_samples),np.zeros(n_samples)))
plot_data(ax, all_data, Y2)
plt.show()
其中,白色的是原來的真實樣本,黑色的點是生成器生成的樣本。
CGAN 和 DCGAN
CGAN
首先實現CGAN。下面分別是 判別器 和 生成器 的網絡結構,能夠看出網絡結構很是簡單,具體以下:
能夠看出,去掉生成器和判別器那 10 維的標籤信息,和普通的GAN是徹底同樣的。下面是網絡的具體實現代碼:
class Discriminator(nn.Module): '''全鏈接判別器,用於1x28x28的MNIST數據,輸出是數據和類別''' def __init__(self): super(Discriminator, self).__init__() self.model = nn.Sequential( nn.Linear(28*28+10, 512), nn.LeakyReLU(0.2, inplace=True), nn.Linear(512, 256), nn.LeakyReLU(0.2, inplace=True), nn.Linear(256, 1), nn.Sigmoid() ) def forward(self, x, c): x = x.view(x.size(0), -1) validity = self.model(torch.cat([x, c], -1)) return validity class Generator(nn.Module): '''全鏈接生成器,用於1x28x28的MNIST數據,輸入是噪聲和類別''' def __init__(self, z_dim): super(Generator, self).__init__() self.model = nn.Sequential( nn.Linear(z_dim+10, 128), nn.LeakyReLU(0.2, inplace=True), nn.Linear(128, 256), nn.BatchNorm1d(256, 0.8), nn.LeakyReLU(0.2, inplace=True), nn.Linear(256, 512), nn.BatchNorm1d(512, 0.8), nn.LeakyReLU(0.2, inplace=True), nn.Linear(in_features=512, out_features=28*28), nn.Tanh() ) def forward(self, z, c): x = self.model(torch.cat([z, c], dim=1)) x = x.view(-1, 1, 28, 28) return x
下面定義相關的模型:
discriminator = Discriminator().to(device)
generator = Generator(z_dim=z_dim).to(device)
bce = torch.nn.BCELoss().to(device)
ones = torch.ones(batch_size).to(device)
zeros = torch.zeros(batch_size).to(device)
g_optimizer = optim.Adam(generator.parameters(), lr=learning_rate)
d_optimizer = optim.Adam(discriminator.parameters(), lr=learning_rate)
開始訓練:
for epoch in range(total_epochs):
# torch.nn.Module.train() 指的是模型啓用 BatchNormalization 和 Dropout # torch.nn.Module.eval() 指的是模型不啓用 BatchNormalization 和 Dropout # 所以,train()通常在訓練時用到, eval() 通常在測試時用到 generator = generator.train() # 訓練一個epoch for i, data in enumerate(dataloader): # 加載真實數據 real_images, real_labels = data real_images = real_images.to(device) # 把對應的標籤轉化成 one-hot 類型 tmp = torch.FloatTensor(real_labels.size(0), 10).zero_() real_labels = tmp.scatter_(dim=1, index=torch.LongTensor(real_labels.view(-1, 1)), value=1) real_labels = real_labels.to(device) # 生成數據 # 用正態分佈中採樣batch_size個隨機噪聲 z = torch.randn([batch_size, z_dim]).to(device) # 生成 batch_size 個 ont-hot 標籤 c = torch.FloatTensor(batch_size, 10).zero_() c = c.scatter_(dim=1, index=torch.LongTensor(np.random.choice(10, batch_size).reshape([batch_size, 1])), value=1) c = c.to(device) # 生成數據 fake_images = generator(z,c) # 計算判別器損失,並優化判別器 real_loss = bce(discriminator(real_images, real_labels), ones) fake_loss = bce(discriminator(fake_images.detach(), c), zeros) d_loss = real_loss + fake_loss d_optimizer.zero_grad() d_loss.backward() d_optimizer.step() # 計算生成器損失,並優化生成器 g_loss = bce(discriminator(fake_images, c), ones) g_optimizer.zero_grad() g_loss.backward() g_optimizer.step() # 輸出損失 print("[Epoch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, total_epochs, d_loss.item(), g_loss.item()))
下面咱們用隨機噪聲生成一組圖像,看看CGAN的效果:
fixed_z = torch.randn([100, z_dim]).to(device)
fixed_c = torch.FloatTensor(100, 10).zero_()
fixed_c = fixed_c.scatter_(dim=1, index=torch.LongTensor(np.array(np.arange(0, 10).tolist()*10).reshape([100, 1])), value=1)
fixed_c = fixed_c.to(device)
generator = generator.eval()
fixed_fake_images = generator(fixed_z, fixed_c)
plt.figure(figsize=(8, 8))
for j in range(10):
for i in range(10):
img = fixed_fake_images[j10+i, 0, :, :].detach().cpu().numpy()
img = img.reshape([28, 28])
plt.subplot(10, 10, j10+i+1)
plt.imshow(img, 'gray')
考慮到上面代碼是把圖像直接拉成一個向量來處理,沒有考慮空間上的特性,所以,效果理論上會不如使用卷積操做的 DCGAN。二者代碼也很是相似,咱們下面比較一下。
DCGAN
下面咱們實現DCGAN。下面分別是 判別器 和 生成器 的網絡結構,和以前相似,只是使用了卷積結構。
class D_dcgan(nn.Module): '''滑動卷積判別器''' def __init__(self): super(D_dcgan, self).__init__() self.conv = nn.Sequential( # 第一個滑動卷積層,不使用BN,LRelu激活函數 nn.Conv2d(in_channels=1, out_channels=16, kernel_size=3, stride=2, padding=1), nn.LeakyReLU(0.2, inplace=True), # 第二個滑動卷積層,包含BN,LRelu激活函數 nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(32), nn.LeakyReLU(0.2, inplace=True), # 第三個滑動卷積層,包含BN,LRelu激活函數 nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(64), nn.LeakyReLU(0.2, inplace=True), # 第四個滑動卷積層,包含BN,LRelu激活函數 nn.Conv2d(in_channels=64, out_channels=128, kernel_size=4, stride=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2, inplace=True) ) # 全鏈接層+Sigmoid激活函數 self.linear = nn.Sequential(nn.Linear(in_features=128, out_features=1), nn.Sigmoid()) def forward(self, x): x = self.conv(x) x = x.view(x.size(0), -1) validity = self.linear(x) return validity class G_dcgan(nn.Module): '''反滑動卷積生成器''' def __init__(self, z_dim): super(G_dcgan, self).__init__() self.z_dim = z_dim # 第一層:把輸入線性變換成256x4x4的矩陣,並在這個基礎上作反捲機操做 self.linear = nn.Linear(self.z_dim, 4*4*256) self.model = nn.Sequential( # 第二層:bn+relu nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=3, stride=2, padding=0), nn.BatchNorm2d(128), nn.ReLU(inplace=True), # 第三層:bn+relu nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(64), nn.ReLU(inplace=True), # 第四層:不使用BN,使用tanh激活函數 nn.ConvTranspose2d(in_channels=64, out_channels=1, kernel_size=4, stride=2, padding=2), nn.Tanh() ) def forward(self, z): # 把隨機噪聲通過線性變換,resize成256x4x4的大小 x = self.linear(z) x = x.view([x.size(0), 256, 4, 4]) # 生成圖片 x = self.model(x) return x
定義相關的模型:
d_dcgan = D_dcgan().to(device)
g_dcgan = G_dcgan(z_dim=z_dim).to(device)
def weights_init_normal(m):
classname = m.class.name
if classname.find('Conv') != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm2d') != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
d_dcgan.apply(weights_init_normal)
g_dcgan.apply(weights_init_normal)
g_dcgan_optim = optim.Adam(g_dcgan.parameters(), lr=learning_rate)
d_dcgan_optim = optim.Adam(d_dcgan.parameters(), lr=learning_rate)
dcgan_dataloader = torch.utils.data.DataLoader(
datasets.MNIST('./data', train=True, download=True,
transform=transforms.Compose([transforms.Resize(32), transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,))])
), batch_size, shuffle=True, drop_last=True)
開始訓練模型:
for e in range(total_epochs):
# 給generator啓用 BatchNormalization g_dcgan = g_dcgan.train() # 訓練一個epoch for i, data in enumerate(dcgan_dataloader): # 加載真實數據,不加載標籤 real_images, _ = data real_images = real_images.to(device) # 用正態分佈中採樣batch_size個噪聲,而後生成對應的圖片 z = torch.randn([batch_size, z_dim]).to(device) fake_images = g_dcgan(z) # 計算判別器損失,並優化判別器 real_loss = bce(d_dcgan(real_images), ones) fake_loss = bce(d_dcgan(fake_images.detach()), zeros) d_loss = real_loss + fake_loss d_dcgan_optim.zero_grad() d_loss.backward() d_dcgan_optim.step() # 計算生成器損失,並優化生成器 g_loss = bce(d_dcgan(fake_images), ones) g_dcgan_optim.zero_grad() g_loss.backward() g_dcgan_optim.step() # 輸出損失 print ("[Epoch %d/%d] [D loss: %f] [G loss: %f]" % (e, total_epochs, d_loss.item(), g_loss.item()))
下面咱們用一組隨機噪聲輸出圖像,看看DCGAN的效果:
fixed_z = torch.randn([100, z_dim]).to(device)
g_dcgan = g_dcgan.eval()
fixed_fake_images = g_dcgan(fixed_z)
plt.figure(figsize=(8, 8))
for j in range(10):
for i in range(10):
img = fixed_fake_images[j10+i, 0, :, :].detach().cpu().numpy()
img = img.reshape([32, 32])
plt.subplot(10, 10, j10+i+1)
plt.imshow(img, 'gray')
這裏只用了30個 epoch,效果還能夠,若是增大 epoch 的數量,效果可能會更好。