JavaShuo
欄目
標籤
【Learning both Weights and Connections for Efficient Neural Networks】論文筆記
時間 2020-12-23
原文
原文鏈接
追隨Song Han大神的第一篇網絡壓縮論文(NIPS’15),論文鏈接:https://arxiv.org/abs/1506.02626 這篇論文只是簡單介紹了裁剪的思路,並沒有涉及到網絡加速。 效果: 作者用了4個網絡實驗 Lenet-300-100, pruning reduces the number of weights by 12× Lenet-5, pruning reduces t
>>阅读原文<<
相關文章
1.
《Learning both Weights and Connections for Efficient Neural Networks》論文筆記
2.
論文品讀:Learning both Weights and Connections for Efficient Neural Networks
3.
論文《Learning both Weights and Connections for Efficient Neural Network》閱讀筆記
4.
網絡模型剪枝-論文閱讀《Learning both Weights and Connections for Efficient Neural Networks》
5.
【論文閱讀】韓鬆《Efficient Methods And Hardware For Deep Learning》節選《Learning both Weights and Connections 》
6.
深度網絡推理加速(Learning both Weights and Connections for Efficient Neural Networks)
7.
論文筆記系列-Simple And Efficient Architecture Search For Neural Networks
8.
Learning Convolutional Neural Networks for Graphs論文筆記
9.
【Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huff】論文筆記
10.
【論文閱讀筆記】Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
更多相關文章...
•
ASP.NET Razor - 標記
-
ASP.NET 教程
•
Scala for循環
-
Scala教程
•
Tomcat學習筆記(史上最全tomcat學習筆記)
•
RxJava操作符(七)Conditional and Boolean
相關標籤/搜索
論文筆記
networks
efficient
connections
neural
weights
learning
論文
論文閱讀筆記
文筆
MyBatis教程
PHP教程
MySQL教程
文件系統
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
shell編譯問題
2.
mipsel 編譯問題
3.
添加xml
4.
直方圖均衡化
5.
FL Studio鋼琴卷軸之畫筆工具
6.
中小企業爲什麼要用CRM系統
7.
Github | MelGAN 超快音頻合成源碼開源
8.
VUE生產環境打包build
9.
RVAS(rare variant association study)知識
10.
不看後悔系列!DTS 控制檯入門一本通(附網盤鏈接)
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
《Learning both Weights and Connections for Efficient Neural Networks》論文筆記
2.
論文品讀:Learning both Weights and Connections for Efficient Neural Networks
3.
論文《Learning both Weights and Connections for Efficient Neural Network》閱讀筆記
4.
網絡模型剪枝-論文閱讀《Learning both Weights and Connections for Efficient Neural Networks》
5.
【論文閱讀】韓鬆《Efficient Methods And Hardware For Deep Learning》節選《Learning both Weights and Connections 》
6.
深度網絡推理加速(Learning both Weights and Connections for Efficient Neural Networks)
7.
論文筆記系列-Simple And Efficient Architecture Search For Neural Networks
8.
Learning Convolutional Neural Networks for Graphs論文筆記
9.
【Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huff】論文筆記
10.
【論文閱讀筆記】Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
>>更多相關文章<<