JavaShuo
欄目
標籤
【Learning both Weights and Connections for Efficient Neural Networks】論文筆記
時間 2020-12-23
原文
原文鏈接
追隨Song Han大神的第一篇網絡壓縮論文(NIPS’15),論文鏈接:https://arxiv.org/abs/1506.02626 這篇論文只是簡單介紹了裁剪的思路,並沒有涉及到網絡加速。 效果: 作者用了4個網絡實驗 Lenet-300-100, pruning reduces the number of weights by 12× Lenet-5, pruning reduces t
>>阅读原文<<
相關文章
1.
《Learning both Weights and Connections for Efficient Neural Networks》論文筆記
2.
論文品讀:Learning both Weights and Connections for Efficient Neural Networks
3.
論文《Learning both Weights and Connections for Efficient Neural Network》閱讀筆記
4.
網絡模型剪枝-論文閱讀《Learning both Weights and Connections for Efficient Neural Networks》
5.
【論文閱讀】韓鬆《Efficient Methods And Hardware For Deep Learning》節選《Learning both Weights and Connections 》
6.
深度網絡推理加速(Learning both Weights and Connections for Efficient Neural Networks)
7.
論文筆記系列-Simple And Efficient Architecture Search For Neural Networks
8.
Learning Convolutional Neural Networks for Graphs論文筆記
9.
【Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huff】論文筆記
10.
【論文閱讀筆記】Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
更多相關文章...
•
ASP.NET Razor - 標記
-
ASP.NET 教程
•
Scala for循環
-
Scala教程
•
Tomcat學習筆記(史上最全tomcat學習筆記)
•
RxJava操作符(七)Conditional and Boolean
相關標籤/搜索
論文筆記
networks
efficient
connections
neural
weights
learning
論文
論文閱讀筆記
文筆
MyBatis教程
PHP教程
MySQL教程
文件系統
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
深度學習硬件架構簡述
2.
重溫矩陣(V) 主成份分析
3.
國慶佳節第四天,談談我月收入增加 4K 的故事
4.
一起學nRF51xx 23 - s130藍牙API介紹
5.
2018最爲緊缺的十大崗位,技術崗佔80%
6.
第一次hibernate
7.
SSM項目後期添加數據權限設計
8.
人機交互期末複習
9.
現在無法開始異步操作。異步操作只能在異步處理程序或模塊中開始,或在頁生存期中的特定事件過程中開始...
10.
微信小程序開發常用元素總結1-1
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
《Learning both Weights and Connections for Efficient Neural Networks》論文筆記
2.
論文品讀:Learning both Weights and Connections for Efficient Neural Networks
3.
論文《Learning both Weights and Connections for Efficient Neural Network》閱讀筆記
4.
網絡模型剪枝-論文閱讀《Learning both Weights and Connections for Efficient Neural Networks》
5.
【論文閱讀】韓鬆《Efficient Methods And Hardware For Deep Learning》節選《Learning both Weights and Connections 》
6.
深度網絡推理加速(Learning both Weights and Connections for Efficient Neural Networks)
7.
論文筆記系列-Simple And Efficient Architecture Search For Neural Networks
8.
Learning Convolutional Neural Networks for Graphs論文筆記
9.
【Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huff】論文筆記
10.
【論文閱讀筆記】Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
>>更多相關文章<<