JavaShuo
欄目
標籤
論文《Learning both Weights and Connections for Efficient Neural Network》閱讀筆記
時間 2020-12-29
標籤
模型壓縮
欄目
系統網絡
简体版
原文
原文鏈接
因爲對深度壓縮中的剪枝不太理解遂讀了原文作者更早的這篇詳細講網絡剪枝的文章點擊打開鏈接 剪枝的過程爲: 1.首先剪枝的前提是對已完成訓練的網絡 2.進行剪枝 要點:根據一個閾值去裁剪參數 a.閾值的確定:首先這個閾值相關於這一層權重的標準差(The pruning threshold is chosen as a quality parameter multiplied by the stan
>>阅读原文<<
相關文章
1.
【Learning both Weights and Connections for Efficient Neural Networks】論文筆記
2.
《Learning both Weights and Connections for Efficient Neural Networks》論文筆記
3.
論文品讀:Learning both Weights and Connections for Efficient Neural Networks
4.
【論文閱讀】韓鬆《Efficient Methods And Hardware For Deep Learning》節選《Learning both Weights and Connections 》
5.
網絡模型剪枝-論文閱讀《Learning both Weights and Connections for Efficient Neural Networks》
6.
深度網絡推理加速(Learning both Weights and Connections for Efficient Neural Networks)
7.
【論文閱讀筆記】ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
8.
論文閱讀筆記:ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
9.
Machine Learning & Deep Learning 論文閱讀筆記
10.
論文閱讀筆記《Edge-Labeling Graph Neural Network for Few-shot Learning》
更多相關文章...
•
RSS 閱讀器
-
RSS 教程
•
PHP 實例 - AJAX RSS 閱讀器
-
PHP教程
•
Tomcat學習筆記(史上最全tomcat學習筆記)
•
RxJava操作符(七)Conditional and Boolean
相關標籤/搜索
論文閱讀
論文閱讀筆記
閱讀筆記
論文筆記
CV論文閱讀
Apple文檔閱讀筆記
efficient
connections
外文閱讀
network
系統網絡
Thymeleaf 教程
MyBatis教程
Redis教程
文件系統
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
【Java8新特性_尚硅谷】P1_P5
2.
SpringSecurity 基礎應用
3.
SlowFast Networks for Video Recognition
4.
074-enable-right-click
5.
WindowFocusListener窗體焦點監聽器
6.
DNS部署(二)DNS的解析(正向、反向、雙向、郵件解析及域名轉換)
7.
Java基礎(十九)集合(1)集合中主要接口和實現類
8.
瀏覽器工作原理學習筆記
9.
chrome瀏覽器構架學習筆記
10.
eclipse引用sun.misc開頭的類
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
【Learning both Weights and Connections for Efficient Neural Networks】論文筆記
2.
《Learning both Weights and Connections for Efficient Neural Networks》論文筆記
3.
論文品讀:Learning both Weights and Connections for Efficient Neural Networks
4.
【論文閱讀】韓鬆《Efficient Methods And Hardware For Deep Learning》節選《Learning both Weights and Connections 》
5.
網絡模型剪枝-論文閱讀《Learning both Weights and Connections for Efficient Neural Networks》
6.
深度網絡推理加速(Learning both Weights and Connections for Efficient Neural Networks)
7.
【論文閱讀筆記】ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
8.
論文閱讀筆記:ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
9.
Machine Learning & Deep Learning 論文閱讀筆記
10.
論文閱讀筆記《Edge-Labeling Graph Neural Network for Few-shot Learning》
>>更多相關文章<<