1 建立k個點做爲K個簇的起始質心(常常隨機選擇) 2 當任意一個點的蔟分配結果發生變化時(初始化爲True) 3 對數據集中的每一個數據點,從新分配質心 4 對每一個質心 5 計算質心到數據點之間的距離 6 將數據點分配到距其最近的蔟 7 對每一個蔟,計算蔟中全部點的均值並將均值做爲新的質心
代碼主要包括兩部分,一個是Kmeans分類器的構建,裏面包含兩個算法,一個是Kmeans,一個是二分K-means。另外一個是一個測試文件代碼,用於執行測試test.txt數據文件html
# -*- coding: utf-8 -*- import numpy as np class KMeansClassifier(): def __init__(self, k=3, initCent='random', max_iter=500 ): self._k = k self._initCent = initCent self._max_iter = max_iter self._clusterAssment = None self._labels = None self._sse = None def _calEDist(self, arrA, arrB): """ 功能:歐拉距離距離計算 輸入:兩個一維數組 """ return np.math.sqrt(sum(np.power(arrA-arrB, 2))) def _calMDist(self, arrA, arrB): """ 功能:曼哈頓距離距離計算 輸入:兩個一維數組 """ return sum(np.abs(arrA-arrB)) def _randCent(self, data_X, k): """ 功能:隨機選取k個質心 輸出:centroids #返回一個m*n的質心矩陣 """ n = data_X.shape[1] #獲取特徵的維數 centroids = np.empty((k,n)) #使用numpy生成一個k*n的矩陣,用於存儲質心 for j in range(n): minJ = min(data_X[:, j]) rangeJ = float(max(data_X[:, j] - minJ)) #使用flatten拉平嵌套列表(nested list) centroids[:, j] = (minJ + rangeJ * np.random.rand(k, 1)).flatten() return centroids def fit(self, data_X): """ 輸入:一個m*n維的矩陣 """ if not isinstance(data_X, np.ndarray) or \ isinstance(data_X, np.matrixlib.defmatrix.matrix): try: data_X = np.asarray(data_X) except: raise TypeError("numpy.ndarray resuired for data_X") m = data_X.shape[0] #獲取樣本的個數 #一個m*2的二維矩陣,矩陣第一列存儲樣本點所屬的族的索引值, #第二列存儲該點與所屬族的質心的平方偏差 self._clusterAssment = np.zeros((m,2)) if self._initCent == 'random': self._centroids = self._randCent(data_X, self._k) clusterChanged = True for _ in range(self._max_iter): #使用"_"主要是由於後面沒有用到這個值 clusterChanged = False for i in range(m): #將每一個樣本點分配到離它最近的質心所屬的族 minDist = np.inf #首先將minDist置爲一個無窮大的數 minIndex = -1 #將最近質心的下標置爲-1 for j in range(self._k): #次迭代用於尋找最近的質心 arrA = self._centroids[j,:] arrB = data_X[i,:] distJI = self._calEDist(arrA, arrB) #計算偏差值 if distJI < minDist: minDist = distJI minIndex = j if self._clusterAssment[i, 0] != minIndex or self._clusterAssment[i, 1] > minDist**2: clusterChanged = True self._clusterAssment[i,:] = minIndex, minDist**2 if not clusterChanged:#若全部樣本點所屬的族都不改變,則已收斂,結束迭代 break for i in range(self._k):#更新質心,將每一個族中的點的均值做爲質心 index_all = self._clusterAssment[:,0] #取出樣本所屬簇的索引值 value = np.nonzero(index_all==i) #取出全部屬於第i個簇的索引值 ptsInClust = data_X[value[0]] #取出屬於第i個簇的全部樣本點 self._centroids[i,:] = np.mean(ptsInClust, axis=0) #計算均值 self._labels = self._clusterAssment[:,0] self._sse = sum(self._clusterAssment[:,1]) def predict(self, X):#根據聚類結果,預測新輸入數據所屬的族 #類型檢查 if not isinstance(X,np.ndarray): try: X = np.asarray(X) except: raise TypeError("numpy.ndarray required for X") m = X.shape[0]#m表明樣本數量 preds = np.empty((m,)) for i in range(m):#將每一個樣本點分配到離它最近的質心所屬的族 minDist = np.inf for j in range(self._k): distJI = self._calEDist(self._centroids[j,:], X[i,:]) if distJI < minDist: minDist = distJI preds[i] = j return preds class biKMeansClassifier(): "this is a binary k-means classifier" def __init__(self, k=3): self._k = k self._centroids = None self._clusterAssment = None self._labels = None self._sse = None def _calEDist(self, arrA, arrB): """ 功能:歐拉距離距離計算 輸入:兩個一維數組 """ return np.math.sqrt(sum(np.power(arrA-arrB, 2))) def fit(self, X): m = X.shape[0] self._clusterAssment = np.zeros((m,2)) centroid0 = np.mean(X, axis=0).tolist() centList =[centroid0] for j in range(m):#計算每一個樣本點與質心之間初始的平方偏差 self._clusterAssment[j,1] = self._calEDist(np.asarray(centroid0), \ X[j,:])**2 while (len(centList) < self._k): lowestSSE = np.inf #嘗試劃分每一族,選取使得偏差最小的那個族進行劃分 for i in range(len(centList)): index_all = self._clusterAssment[:,0] #取出樣本所屬簇的索引值 value = np.nonzero(index_all==i) #取出全部屬於第i個簇的索引值 ptsInCurrCluster = X[value[0],:] #取出屬於第i個簇的全部樣本點 clf = KMeansClassifier(k=2) clf.fit(ptsInCurrCluster) #劃分該族後,所獲得的質心、分配結果及偏差矩陣 centroidMat, splitClustAss = clf._centroids, clf._clusterAssment sseSplit = sum(splitClustAss[:,1]) index_all = self._clusterAssment[:,0] value = np.nonzero(index_all==i) sseNotSplit = sum(self._clusterAssment[value[0],1]) if (sseSplit + sseNotSplit) < lowestSSE: bestCentToSplit = i bestNewCents = centroidMat bestClustAss = splitClustAss.copy() lowestSSE = sseSplit + sseNotSplit #該族被劃分紅兩個子族後,其中一個子族的索引變爲原族的索引 #另外一個子族的索引變爲len(centList),而後存入centList bestClustAss[np.nonzero(bestClustAss[:,0]==1)[0],0]=len(centList) bestClustAss[np.nonzero(bestClustAss[:,0]==0)[0],0]=bestCentToSplit centList[bestCentToSplit] = bestNewCents[0,:].tolist() centList.append(bestNewCents[1,:].tolist()) self._clusterAssment[np.nonzero(self._clusterAssment[:,0] == \ bestCentToSplit)[0],:]= bestClustAss self._labels = self._clusterAssment[:,0] self._sse = sum(self._clusterAssment[:,1]) self._centroids = np.asarray(centList) def predict(self, X):#根據聚類結果,預測新輸入數據所屬的族 #類型檢查 if not isinstance(X,np.ndarray): try: X = np.asarray(X) except: raise TypeError("numpy.ndarray required for X") m = X.shape[0]#m表明樣本數量 preds = np.empty((m,)) for i in range(m):#將每一個樣本點分配到離它最近的質心所屬的族 minDist = np.inf for j in range(self._k): distJI = self._calEDist(self._centroids[j,:],X[i,:]) if distJI < minDist: minDist = distJI preds[i] = j return preds
# -*- coding: utf-8 -*- import pandas as pd import numpy as np from kmeans import KMeansClassifier import matplotlib.pyplot as plt #加載數據集,DataFrame格式,最後將返回爲一個matrix格式 def loadDataset(infile): df = pd.read_csv(infile, sep='\t', header=0, dtype=str, na_filter=False) return np.array(df).astype(np.float) if __name__=="__main__": data_X = loadDataset(r"data/testSet.txt") k = 3 clf = KMeansClassifier(k) clf.fit(data_X) cents = clf._centroids labels = clf._labels sse = clf._sse colors = ['b','g','r','k','c','m','y','#e24fff','#524C90','#845868'] for i in range(k): index = np.nonzero(labels==i)[0] x0 = data_X[index, 0] x1 = data_X[index, 1] y_i = i for j in range(len(x0)): plt.text(x0[j], x1[j], str(y_i), color=colors[i], \ fontdict={'weight': 'bold', 'size': 6}) plt.scatter(cents[i,0],cents[i,1],marker='x',color=colors[i],\ linewidths=7) plt.title("SSE={:.2f}".format(sse)) plt.axis([-7,7,-7,7]) outname = "./result/k_clusters" + str(k) + ".png" plt.savefig(outname) plt.show()
參考:http://www.csuldw.com/2015/06/03/2015-06-03-ml-algorithm-K-means/算法