窗口視圖變換python
用戶域:程序員用來定義草圖的整個天然空間WD,它是一個實數域,理論上WD是連續無限的。程序員
窗口區:用戶指定的任一區域W,它是WD的子域,通常爲矩形域。spa
屏幕域:設備輸出圖形的最大區域DC,它是有限的整數域, 如:如顯示器有1600*1200個像素。3d
視圖區:任何小於等於屏幕域的區域。通常爲矩形。一個 屏幕上可定義多個視圖。code
窗口和視圖之間的座標轉換blog
對於窗口和視圖的座標變換,咱們能夠根據變換的比例關係獲得以下等式:get
根據公式,能夠推導出下面的變換公式:it
圖形的幾何變換io
對各類圖形的幾何變換,其實是對點的變換,對原來圖形中的一點座標經過變換生成一個新的點座標。二維圖形的幾何變換的表示採用3*3矩陣的形式,稱爲變換矩陣,點的座標表示採用齊次座標形式,故幾何變換操做的過程是將變換矩陣M做用於齊次座標點P生成新的座標點P´,即P´=PM。其中齊次座標齊次座標表示就是用n+1維向量表示一個n維向量,齊次座標不惟一,規範化齊次座標表示就是h=1的齊次座標。ast
平移變換
x´=x+Tx,y´=y+Ty
比例變換
x’=x . Sx, y’=y . Sy
對稱變換
x’=ax+by,y’=dx+ey
旋轉變換
x´=xcosθ-ysinθ,y´=xsinθ+ycosθ
錯切變換
x’=x+by, y’=dx+y
複合變換
通常的圖形變換大可能是複合變換,即由多個基本幾何變換組合而成,複合變換矩陣其實是一系列基本幾何變換矩陣的乘積結果。
例如在圖形繞平面上的一點(x0,y0)做旋轉變換θ角度:
[x´,y´,1] = [x,y,1]T2(-x0,-y0)R2(θ)T2(x0,y0)
形體的透視變換
要把現實世界的三維物體在計算機的二維屏幕上 顯示出來,必須通過投影變化,把物體從三維表示形式 轉化爲二維表示形式。
下面給出python實現的圖像旋轉:
import cv2 import numpy as np path = 'img/a.png' def show(image): image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5) cv2.imshow('image', image) cv2.waitKey(0) cv2.destroyAllWindows() def draw_line(image, point, color=(0, 255, 0), w=2): image = cv2.line(image, (point[0][0], point[0][1]), (point[1][0], point[1][1]), color, w) image = cv2.line(image, (point[1][0], point[1][1]), (point[2][0], point[2][1]), color, w) image = cv2.line(image, (point[2][0], point[2][1]), (point[3][0], point[3][1]), color, w) image = cv2.line(image, (point[3][0], point[3][1]), (point[0][0], point[0][1]), color, w) return image def cal_rotate_point(center, point, degree): x, y = center point_ro = np.zeros_like(point) rad = np.deg2rad(degree) x1 = x - (x * np.cos(rad) - y * np.sin(rad)) y1 = y - (x * np.sin(rad) + y * np.cos(rad)) for i in range(point_ro.shape[0]): point_ro[i][0] = int(point[i][0] * np.cos(rad) - point[i][1] * np.sin(rad) + x1 + 0.5) point_ro[i][1] = int(point[i][0] * np.sin(rad) + point[i][1] * np.cos(rad) + y1 + 0.5) return point_ro def rotate(image, center, degree): x, y = center[0], center[1] h, w = image.shape[:2] img = np.zeros_like(image) rad = np.deg2rad(degree) for i in range(w): for j in range(h): ir = (i-x) * np.cos(rad) - (j-y) * np.sin(rad) + x + 0.5 jr = (i-x) * np.sin(rad) + (j-y) * np.cos(rad) + y + 0.5 ir = int(ir) jr = int(jr) if 1 <= ir < w-1 and 1 <= jr < h-1: img[jr, ir, :] = image[j, i, :] img[jr-1, ir, :] = image[j, i, :] # 對該像素的周圍4個像素進行賦值 img[jr+1, ir, :] = image[j, i, :] img[jr, ir-1, :] = image[j, i, :] img[jr, ir+1, :] = image[j, i, :] return img def rotation(image, center, degree): center_h, center_w = center[:2] M = cv2.getRotationMatrix2D((center_h, center_w), -degree, 1) # 參數依次爲旋轉中心, 旋轉角度, 變換尺度, 返回變換矩陣 img = cv2.warpAffine(image, M, (image.shape[1], image.shape[0])) return img def cal_rotation_point(center, point, degree): center_w, center_h = center[:2] M = cv2.getRotationMatrix2D((center_w, center_h), -degree, 1) # 參數依次爲旋轉中心, 旋轉角度, 變換尺度, 返回變換矩陣 point = np.array(point) point = np.insert(point, 2, values=np.ones(4), axis=1) M = np.mat(M).T new_point = np.dot(point, M) new_point = new_point.astype(int) new_point = [[new_point[i, 0], new_point[i, 1]] for i in range(new_point.shape[0])] return new_point def my_rotate(image, point, degree, center): image_box = draw_line(image.copy(), point) img = rotate(image.copy(), (center[0], center[1]), degree) point_ro = cal_rotate_point((center[0], center[1]), point, degree) image_ro_box = draw_line(img, point_ro) images = np.hstack((image_box, image_ro_box)) return images def cv_rotate(image, point, degree, center): image_box = draw_line(image.copy(), point) img = rotation(image.copy(), (center[0], center[1]), degree) point_ro = cal_rotation_point((center[0], center[1]), point, degree) image_ro_box = draw_line(img, point_ro) print(point_ro) images = np.hstack((image_box, image_ro_box)) return images def main(): image = cv2.imread(path) print(image.shape) center = (image.shape[1]//2, image.shape[0]//2) center = (0, 0) point = [[348, 183], [549, 191], [580, 613], [332, 618]] degree = 15 images1 = my_rotate(image, point, degree, center) images2 = cv_rotate(image, point, degree, center) images = np.vstack((images1, images2)) show(images) if __name__ == '__main__': main()