★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公衆號:山青詠芝(shanqingyongzhi)
➤博客園地址:山青詠芝(https://www.cnblogs.com/strengthen/)
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址: http://www.javashuo.com/article/p-hvojtfiw-me.html
➤若是連接不是山青詠芝的博客園地址,則多是爬取做者的文章。
➤原文已修改更新!強烈建議點擊原文地址閱讀!支持做者!支持原創!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★html
We are given S
, a length n
string of characters from the set {'D', 'I'}
. (These letters stand for "decreasing" and "increasing".)git
A valid permutation is a permutation P[0], P[1], ..., P[n]
of integers {0, 1, ..., n}
, such that for all i
:github
S[i] == 'D'
, then P[i] > P[i+1]
, and;S[i] == 'I'
, then P[i] < P[i+1]
.How many valid permutations are there? Since the answer may be large, return your answer modulo 10^9 + 7
. 微信
Example 1:spa
Input: "DID"
Output: 5 Explanation: The 5 valid permutations of (0, 1, 2, 3) are: (1, 0, 3, 2) (2, 0, 3, 1) (2, 1, 3, 0) (3, 0, 2, 1) (3, 1, 2, 0)
Note:code
1 <= S.length <= 200
S
consists only of characters from the set {'D', 'I'}
.咱們給出 S
,一個源於 {'D', 'I'}
的長度爲 n
的字符串 。(這些字母表明 「減小」 和 「增長」。)
有效排列 是對整數 {0, 1, ..., n}
的一個排列 P[0], P[1], ..., P[n]
,使得對全部的 i
:htm
S[i] == 'D'
,那麼 P[i] > P[i+1]
,以及;S[i] == 'I'
,那麼 P[i] < P[i+1]
。有多少個有效排列?由於答案可能很大,因此請返回你的答案模 10^9 + 7
. blog
示例:字符串
輸入:"DID" 輸出:5 解釋: (0, 1, 2, 3) 的五個有效排列是: (1, 0, 3, 2) (2, 0, 3, 1) (2, 1, 3, 0) (3, 0, 2, 1) (3, 1, 2, 0)
提示:get
1 <= S.length <= 200
S
僅由集合 {'D', 'I'}
中的字符組成。1 class Solution { 2 func numPermsDISequence(_ S: String) -> Int { 3 var n:Int = S.count 4 var mod:Int = Int(1e9 + 7) 5 var dp:[[Int]] = [[Int]](repeating:[Int](repeating:0,count:n + 1),count:n + 1) 6 for j in 0...n 7 { 8 dp[0][j] = 1 9 } 10 let arrS:[Character] = Array(S) 11 for i in 0..<n 12 { 13 if arrS[i] == "I" 14 { 15 var j:Int = 0 16 var cur:Int = 0 17 while(j < n - i) 18 { 19 cur = (cur + dp[i][j]) % mod 20 dp[i + 1][j] = cur 21 j += 1 22 } 23 } 24 else 25 { 26 var j:Int = n - i - 1 27 var cur:Int = 0 28 while(j >= 0) 29 { 30 cur = (cur + dp[i][j + 1]) % mod 31 dp[i + 1][j] = cur 32 j -= 1 33 } 34 } 35 } 36 return dp[n][0] 37 } 38 }