JavaShuo
欄目
標籤
MemGuard: Defending against Black-Box Membership Inference Attacks via Adversarial Examples
時間 2021-01-08
標籤
論文分享
# 【paper】Sec4AI
简体版
原文
原文鏈接
[CCS’19] MemGuard: Defending against Black-Box Membership Inference Attacks via Adversarial Examples Keywords: Membership Inference Attack, Adversarial Example Takeaways: This paper proposed a fancy i
>>阅读原文<<
相關文章
1.
論文學習筆記 MemGuard: Defending against Black-Box Membership Inference Attacks via Adversarial Examples
2.
論文筆記:Membership Inference Attacks Against Machine Learning Models
3.
論文解析:Membership Inference Attacks Against Machine Learning Models(一看即懂)
4.
Detecting and Defending against PowerShell Shells
5.
關於EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples的理解
6.
Paper Review: Adversarial Examples
7.
論文翻譯-Defending Against Universal Attacks Through Selective Feature Regeneration
8.
Practical Black-Box Attacks against Machine Learning
9.
(轉)Is attacking machine learning easier than defending it?
10.
[advGAN]Generating Adversarial Examples With Adversarial Networks
更多相關文章...
•
XPath Examples
-
XPath 教程
•
PHP is_uploaded_file() 函數
-
PHP參考手冊
相關標籤/搜索
examples
membership
adversarial
attacks
blackbox
inference
CLR via C#
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
[最佳實踐]瞭解 Eolinker 如何助力遠程辦公
2.
katalon studio 安裝教程
3.
精通hibernate(harness hibernate oreilly)中的一個」錯誤「
4.
ECharts立體圓柱型
5.
零拷貝總結
6.
6 傳輸層
7.
Github協作圖想
8.
Cannot load 32-bit SWT libraries on 64-bit JVM
9.
IntelliJ IDEA 找其歷史版本
10.
Unity3D(二)遊戲對象及組件
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
論文學習筆記 MemGuard: Defending against Black-Box Membership Inference Attacks via Adversarial Examples
2.
論文筆記:Membership Inference Attacks Against Machine Learning Models
3.
論文解析:Membership Inference Attacks Against Machine Learning Models(一看即懂)
4.
Detecting and Defending against PowerShell Shells
5.
關於EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples的理解
6.
Paper Review: Adversarial Examples
7.
論文翻譯-Defending Against Universal Attacks Through Selective Feature Regeneration
8.
Practical Black-Box Attacks against Machine Learning
9.
(轉)Is attacking machine learning easier than defending it?
10.
[advGAN]Generating Adversarial Examples With Adversarial Networks
>>更多相關文章<<