JavaShuo
欄目
標籤
MemGuard: Defending against Black-Box Membership Inference Attacks via Adversarial Examples
時間 2021-01-08
標籤
論文分享
# 【paper】Sec4AI
简体版
原文
原文鏈接
[CCS’19] MemGuard: Defending against Black-Box Membership Inference Attacks via Adversarial Examples Keywords: Membership Inference Attack, Adversarial Example Takeaways: This paper proposed a fancy i
>>阅读原文<<
相關文章
1.
論文學習筆記 MemGuard: Defending against Black-Box Membership Inference Attacks via Adversarial Examples
2.
論文筆記:Membership Inference Attacks Against Machine Learning Models
3.
論文解析:Membership Inference Attacks Against Machine Learning Models(一看即懂)
4.
Detecting and Defending against PowerShell Shells
5.
關於EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples的理解
6.
Paper Review: Adversarial Examples
7.
論文翻譯-Defending Against Universal Attacks Through Selective Feature Regeneration
8.
Practical Black-Box Attacks against Machine Learning
9.
(轉)Is attacking machine learning easier than defending it?
10.
[advGAN]Generating Adversarial Examples With Adversarial Networks
更多相關文章...
•
XPath Examples
-
XPath 教程
•
PHP is_uploaded_file() 函數
-
PHP參考手冊
相關標籤/搜索
examples
membership
adversarial
attacks
blackbox
inference
CLR via C#
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
排序-堆排序(heapSort)
2.
堆排序(heapSort)
3.
堆排序(HEAPSORT)
4.
SafetyNet簡要梳理
5.
中年轉行,擁抱互聯網(上)
6.
SourceInsight4.0鼠標單擊變量 整個文件一樣的關鍵字高亮
7.
遊戲建模和室內設計那個未來更有前景?
8.
cloudlet_使用Search Cloudlet爲您的搜索添加種類
9.
藍海創意雲丨這3條小建議讓編劇大大提高工作效率!
10.
flash動畫製作修改教程及超實用的小技巧分享,碩思閃客精靈
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
論文學習筆記 MemGuard: Defending against Black-Box Membership Inference Attacks via Adversarial Examples
2.
論文筆記:Membership Inference Attacks Against Machine Learning Models
3.
論文解析:Membership Inference Attacks Against Machine Learning Models(一看即懂)
4.
Detecting and Defending against PowerShell Shells
5.
關於EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples的理解
6.
Paper Review: Adversarial Examples
7.
論文翻譯-Defending Against Universal Attacks Through Selective Feature Regeneration
8.
Practical Black-Box Attacks against Machine Learning
9.
(轉)Is attacking machine learning easier than defending it?
10.
[advGAN]Generating Adversarial Examples With Adversarial Networks
>>更多相關文章<<