JavaShuo
欄目
標籤
論文解析:Membership Inference Attacks Against Machine Learning Models(一看即懂)
時間 2021-03-07
標籤
論文筆記
神經網絡
機器學習
简体版
原文
原文鏈接
論文解析:Membership Inference Attacks Against Machine Learning Models(一看即懂,超詳細版本) 摘要:這篇文章致力於探索機器學習模型如何泄露訓練集中的信息,專注於基本的成員推理攻擊,即給出一個機器學習模型和一條記錄,判斷該樣本是否被用作訓練集中的一部分。 我們對「機器學習即服務(machine learning as a service)
>>阅读原文<<
相關文章
1.
論文筆記:Membership Inference Attacks Against Machine Learning Models
2.
論文學習筆記 MemGuard: Defending against Black-Box Membership Inference Attacks via Adversarial Examples
3.
Practical Black-Box Attacks against Machine Learning
4.
論文筆記:ML-Leaks: Model and Data Independent Membership Inference Attacks and Defenses on Machine Learn
5.
論文解析:Machine Learning with Membership Privacy using Adversarial Regularization
6.
[paper]Practical Black-Box Attacks against Machine Learning
7.
MemGuard: Defending against Black-Box Membership Inference Attacks via Adversarial Examples
8.
Practical Black-Box Attacks against Machine Learning 閱讀筆記
9.
Classification and inference with machine learning
10.
PGD:Towards Deep Learning Models Resistant to Adversarial Attacks
更多相關文章...
•
TCP報文格式解析
-
TCP/IP教程
•
查看 XML 文件
-
XML 教程
•
Scala 中文亂碼解決
•
三篇文章瞭解 TiDB 技術內幕 —— 說計算
相關標籤/搜索
membership
attacks
machine
inference
models
learning
看懂
論文解讀
圖文解析
論文
PHP教程
Spring教程
MyBatis教程
文件系統
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
在windows下的虛擬機中,安裝華爲電腦的deepin操作系統
2.
強烈推薦款下載不限速解析神器
3.
【區塊鏈技術】孫宇晨:區塊鏈技術帶來金融服務的信任變革
4.
搜索引起的鏈接分析-計算網頁的重要性
5.
TiDB x 微衆銀行 | 耗時降低 58%,分佈式架構助力實現普惠金融
6.
《數字孿生體技術白皮書》重磅發佈(附完整版下載)
7.
雙十一「避坑」指南:區塊鏈電子合同爲電商交易保駕護航!
8.
區塊鏈產業,怎樣「鏈」住未來?
9.
OpenglRipper使用教程
10.
springcloud請求一次好用一次不好用zuul Name or service not known
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
論文筆記:Membership Inference Attacks Against Machine Learning Models
2.
論文學習筆記 MemGuard: Defending against Black-Box Membership Inference Attacks via Adversarial Examples
3.
Practical Black-Box Attacks against Machine Learning
4.
論文筆記:ML-Leaks: Model and Data Independent Membership Inference Attacks and Defenses on Machine Learn
5.
論文解析:Machine Learning with Membership Privacy using Adversarial Regularization
6.
[paper]Practical Black-Box Attacks against Machine Learning
7.
MemGuard: Defending against Black-Box Membership Inference Attacks via Adversarial Examples
8.
Practical Black-Box Attacks against Machine Learning 閱讀筆記
9.
Classification and inference with machine learning
10.
PGD:Towards Deep Learning Models Resistant to Adversarial Attacks
>>更多相關文章<<