JavaShuo
欄目
標籤
關於EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples的理解
時間 2020-12-27
標籤
對抗樣本
简体版
原文
原文鏈接
在本文中,作者基於之前的Carlini & Wagner攻擊提出了一些新的改進,從而在確保攻擊成功率的情況下,增強了攻擊的可轉移性。 作者仍然沿用之前C&W攻擊的目標函數 f(x,t) f ( x , t ) : f(x,t)=max{maxj≠t[Logit(x)]j−[Logit(x)]t,−k} f ( x , t ) = max { max j ≠ t [ L o g i t ( x
>>阅读原文<<
相關文章
1.
[paper]Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks
2.
關於Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks的理解
3.
Paper Review: Adversarial Examples
4.
[advGAN]Generating Adversarial Examples With Adversarial Networks
5.
【生成對抗樣本】Simple Black-Box Adversarial Attacks on Deep Neural Networks
6.
PGD:Towards Deep Learning Models Resistant to Adversarial Attacks
7.
MemGuard: Defending against Black-Box Membership Inference Attacks via Adversarial Examples
8.
Generating Adversarial Examples with Adversarial Networks
9.
Adversarial Examples 對抗樣本
10.
Recognizing irregular entities in biomedical text via deep neural networks
更多相關文章...
•
XPath Examples
-
XPath 教程
•
Spring基於Annotation裝配Bean
-
Spring教程
•
NewSQL-TiDB相關
•
☆基於Java Instrument的Agent實現
相關標籤/搜索
examples
networks
adversarial
attacks
elasticnet
neural
deep
關於
我的理解
理解
NoSQL教程
MySQL教程
Spring教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
升級Gradle後報錯Gradle‘s dependency cache may be corrupt (this sometimes occurs
2.
Smarter, Not Harder
3.
mac-2019-react-native 本地環境搭建(xcode-11.1和android studio3.5.2中Genymotion2.12.1 和VirtualBox-5.2.34 )
4.
查看文件中關鍵字前後幾行的內容
5.
XXE萌新進階全攻略
6.
Installation failed due to: ‘Connection refused: connect‘安卓studio端口占用
7.
zabbix5.0通過agent監控winserve12
8.
IT行業UI前景、潛力如何?
9.
Mac Swig 3.0.12 安裝
10.
Windows上FreeRDP-WebConnect是一個開源HTML5代理,它提供對使用RDP的任何Windows服務器和工作站的Web訪問
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
[paper]Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks
2.
關於Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks的理解
3.
Paper Review: Adversarial Examples
4.
[advGAN]Generating Adversarial Examples With Adversarial Networks
5.
【生成對抗樣本】Simple Black-Box Adversarial Attacks on Deep Neural Networks
6.
PGD:Towards Deep Learning Models Resistant to Adversarial Attacks
7.
MemGuard: Defending against Black-Box Membership Inference Attacks via Adversarial Examples
8.
Generating Adversarial Examples with Adversarial Networks
9.
Adversarial Examples 對抗樣本
10.
Recognizing irregular entities in biomedical text via deep neural networks
>>更多相關文章<<