機器學習--如何理解svm的損失函數

如何理解svm的損失函數 損失函數: 是用來衡量一個預測器在對輸入數據進行分類預測時的質量好壞。損失值越小,分類器的效果越好,越能反映輸入數據與輸出類別標籤的關係(雖然我們的模型有時候會過擬合——這是由於訓練數據被過度擬合,導致我們的模型失去了泛化能力)。 相反,損失值越大,我們需要花更多的精力來提升模型的準確率。就參數化學習而言,這涉及到調整參數,比如需要調節權重矩陣W或偏置向量B,以提高分類的
相關文章
相關標籤/搜索