本系列教程爲pytorch官網文檔翻譯。本文對應官網地址:https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.htmlhtml
系列教程總目錄傳送門:我是一個傳送門python
本系列教程對應的 jupyter notebook 能夠在個人Github倉庫下載:git
數據下載通道: 點擊這裏下載數據集。解壓到當前工做目錄。網絡
在 data/names
文件夾下面包含18個名字形如 [language].txt
的文件。每一個文件包含多條姓名,一個姓名一行。咱們在以後須要將其編碼格式(Unicode)轉化爲ASCII。app
經過下面的步驟,咱們能夠獲得一個數據字典,形如{language:[name1,name2,...]}
,字典的鍵爲語言,值爲一個列表,包含對應文件夾下面的全部姓名。用變量 category
和 line
分別標識鍵值對dom
from __future__ import unicode_literals, print_function, division from io import open import glob import os def findFiles(path): return glob.glob(path) print(findFiles('data/names/*.txt')) import unicodedata import string all_letters = string.ascii_letters + " .,;'" n_letters = len(all_letters) # Turn a Unicode string to plain ASCII def unicodeToAscii(s): return ''.join( c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c)!= 'Mn' and c in all_letters ) print(unicodeToAscii('Ślusàrski')) # Build the category_lines dictinary, a list of names per language category_lines={} all_categories = [] # Read a file and split into lines def readLines(filename): lines = open(filename, encoding='utf-8').read().strip().split('\n') return [unicodeToAscii(line) for line in lines] for filename in findFiles('data/names/*.txt'): category = os.path.splitext(os.path.basename(filename))[0] all_categories.append(category) lines = readLines(filename) category_lines[category] = lines n_categories = len(all_categories)
out:函數
['data/names\\Arabic.txt', 'data/names\\Chinese.txt', 'data/names\\Czech.txt', 'data/names\\Dutch.txt', 'data/names\\English.txt', 'data/names\\French.txt', 'data/names\\German.txt', 'data/names\\Greek.txt', 'data/names\\Irish.txt', 'data/names\\Italian.txt', 'data/names\\Japanese.txt', 'data/names\\Korean.txt', 'data/names\\Polish.txt', 'data/names\\Portuguese.txt', 'data/names\\Russian.txt', 'data/names\\Scottish.txt', 'data/names\\Spanish.txt', 'data/names\\Vietnamese.txt'] Slusarski
如今咱們有了category_lines
, 這是一個字典映射了每一個語言和對應的名字。咱們一樣記錄了 all_categories
(一個包含全部語言的列表)和 n_categories
方便後續的引用ui
print(category_lines['Italian'][:5])
out: ['Abandonato', 'Abatangelo', 'Abatantuono', 'Abate', 'Abategiovanni']編碼
如今咱們將全部的姓名組織好了,咱們須要將他們轉化爲張量(Tensor)方便使用。
爲了表示單個字母,咱們使用 one-hot 表示方法(size:<1 x n_letters>
) 。一個 one-hot 向量是全0(激活字母爲1)的向量。 例如:
"b"=<0,1,0,0,0,...,0>
。
因而每一個姓名能夠用形狀爲 <line_length x 1 x n_letters>
的 2D 矩陣表示。
額外的一個維度是爲了構建一個假的 batch(pytorch只接受mini_batch數據)
import torch # Fine letter index from all_letters, e.g. "a"=0 def letterToIndex(letter): return all_letters.find(letter) # Just for demonstration, turn a letter into a <1 x n_letters> Tensor def letterToTensor(letter): tensor = torch.zeros(1, n_letters) tensor[0][letterToIndex(letter)]=1 return tensor # Turn a line into a <line_length x 1 x n_letters>, # or an array of one_hot letter vectors def lineToTensor(line): tensor = torch.zeros(len(line), 1, n_letters) for li, letter in enumerate(line): tensor[li][0][letterToIndex(letter)]=1 return tensor print(letterToTensor('J')) print(lineToTensor('Jones').size())
out:
tensor([[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]) torch.Size([5, 1, 57])
在 autograd
出現前, 在Torch中建立一個循環神經網絡須要在每個時間步克隆層參數。網絡層持有一個隱藏狀態和梯度信息,而目前這些徹底交由計算圖自己來處理。這意味着你能本身用一個很純淨的方式來實現一個 RNN——僅僅使用一些常規的前饋層。
這個RNN模塊只有兩個線性層,以輸入和隱藏狀態爲輸入,LogsSoftmax 層爲輸出。
以下圖所示:
import torch.nn as nn class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(RNN, self).__init__() self.hidden_size = hidden_size self.i2h = nn.Linear(input_size + hidden_size, hidden_size) self.i2o = nn.Linear(input_size + hidden_size, output_size) self.softmax = nn.LogSoftmax(dim=1) def forward(self, input, hidden): combined = torch.cat([input, hidden], 1) hidden = self.i2h(combined) output = self.i2o(combined) output = self.softmax(output) return output, hidden def initHidden(self): return torch.zeros(1, self.hidden_size) n_hidden = 128 rnn = RNN(n_letters, n_hidden, n_categories)
爲了運行這個網絡,咱們須要傳遞輸入和前一層傳遞下來的隱藏狀態(初始化爲0)。咱們使用最後一層的輸出做爲預測的結果
input = letterToTensor('A') hidden = torch.zeros(1, n_hidden) output, next_hidden = rnn(input, hidden)
out:
tensor([[-2.8338, -2.9645, -2.9535, -2.9355, -2.9281, -2.8521, -2.8352, -2.9544, -2.8516, -2.8932, -2.7696, -2.8142, -2.8888, -2.7888, -2.8991, -2.9971, -2.9783, -2.9278]])
正如你所看到的,輸出是<1 x n_categories>
的Tensor,其中每一個項目都是該類別的可能性(越大表明可能性越高)。
在進入訓練以前,咱們應該作一些輔助函數。第一個是解釋網絡的輸出,咱們知道這是每一個類別的可能性。這裏使用Tensor.topk來得到最大值的索引
def categoryFromOutput(output): top_n, top_i = output.topk(1) category_i = top_i[0].item() return all_categories[category_i], category_i print(categoryFromOutput(output))
out:
('Japanese', 10)
同時咱們還想快速得到一個訓練樣本(姓名及其所屬語言):
import random def randomChoice(l): return l[random.randint(0, len(l)-1)] def randomTrainingExample(): category = randomChoice(all_categories) line = randomChoice(category_lines[category]) category_tensor = torch.tensor([all_categories.index(category)],dtype=torch.long) line_tensor = lineToTensor(line) return category, line, category_tensor, line_tensor for i in range(10): category, line, category_tensor, line_tensor = randomTrainingExample() print('category = ', category, '/ line =', line)
out:
category = Czech / line = Morava category = English / line = Linsby category = Dutch / line = Agteren category = Scottish / line = Mccallum category = German / line = Laurenz category = Chinese / line = Long category = Italian / line = Pittaluga category = Japanese / line = Sugitani category = Portuguese / line = Duarte category = French / line = Macon
如今,訓練這個網絡所須要的只是展現一堆例子,讓它作出猜想,而後告訴它是否錯了。
對於損失函數的選擇,nn.NLLLoss
是合適的,由於RNN的最後一層是nn.LogSoftmax
criterion = nn.NLLLoss()
每一個循環的訓練作了以下的事情:
learning_rate = 0.005 def train(category_tensor, line_tensor): hidden = rnn.initHidden() rnn.zero_grad() for i in range(line_tensor.size()[0]): output,hidden = rnn(line_tensor[i],hidden) loss = criterion(output, category_tensor) loss.backward() for p in rnn.parameters(): p.data.add_(-learning_rate, p.grad.data) return output, loss.item()
如今咱們只須要用一堆例子來運行它。因爲訓練函數同時返回輸出和損失,咱們能夠打印其猜想並跟蹤繪圖的損失。因爲有1000個示例,咱們只打印每一個print_every示例,並取平均損失。
import time import math n_iters = 100000 print_every = 5000 plot_every = 1000 current_loss = 0 all_losses = [] def timeSince(since): now = time.time() s = now - since m = math.floor(s/60) s -= m*60 return '%dm %ds'%(m,s) start = time.time() for iter in range(1, n_iters+1): category, line, category_tensor, line_tensor = randomTrainingExample() output, loss = train(category_tensor, line_tensor) current_loss+=loss if iter % print_every == 0: guess, guess_i = categoryFromOutput(output) correct = '✓' if guess == category else '✗ (%s)' % category print('%d %d%% (%s) %.4f %s / %s %s' % (iter, iter / n_iters * 100, timeSince(start), loss, line, guess, correct)) if iter%plot_every==0: all_losses.append(current_loss / plot_every) current_loss = 0
out:
5000 5% (0m 9s) 2.2742 Bazovski / Polish ✗ (Russian) 10000 10% (0m 17s) 2.8028 Rossum / Arabic ✗ (Dutch) 15000 15% (0m 24s) 0.5319 Tsahalis / Greek ✓ 20000 20% (0m 32s) 1.9478 Ojeda / Spanish ✓ 25000 25% (0m 40s) 3.0673 Salomon / Russian ✗ (Polish) 30000 30% (0m 47s) 1.7099 Hong / Chinese ✗ (Korean) 35000 35% (0m 55s) 1.6736 Ruaidh / Irish ✓ 40000 40% (1m 3s) 0.0943 Cearbhall / Irish ✓ 45000 45% (1m 10s) 1.6163 Severin / Dutch ✗ (French) 50000 50% (1m 18s) 0.1879 Horiatis / Greek ✓ 55000 55% (1m 26s) 0.0733 Eliopoulos / Greek ✓ 60000 60% (1m 34s) 0.8175 Pagani / Italian ✓ 65000 65% (1m 41s) 0.4049 Murphy / Scottish ✓ 70000 70% (1m 49s) 0.5367 Seo / Korean ✓ 75000 75% (1m 58s) 0.4234 Brzezicki / Polish ✓ 80000 80% (2m 6s) 0.8812 Ayugai / Japanese ✓ 85000 85% (2m 13s) 1.4328 Guirguis / Greek ✗ (Arabic) 90000 90% (2m 21s) 0.3510 Dam / Vietnamese ✓ 95000 95% (2m 29s) 0.0634 Teunissen / Dutch ✓ 100000 100% (2m 37s) 0.4243 Laganas / Greek ✓
import matplotlib.pyplot as plt import matplotlib.ticker as ticker %matplotlib inline plt.figure() plt.plot(all_losses)
out:
爲了瞭解網絡在不一樣類別上的表現如何,咱們將建立一個混淆矩陣,指示每一個實際語言(行)網絡猜想的哪一種語言(列)。爲了計算混淆矩陣,使用evaluate()經過網絡運行一組樣本.
confusion = torch.zeros(n_categories, n_categories) n_confusion = 10000 def evaluate(line_tensor): hidden = rnn.initHidden() for i in range(line_tensor.size()[0]): output,hidden = rnn(line_tensor[i], hidden) return output for i in range(n_confusion): category, line, category_tensor, line_tensor = randomTrainingExample() output = evaluate(line_tensor) guess, guess_i = categoryFromOutput(output) category_i = all_categories.index(category) confusion[category_i][guess_i]+=1 for i in range(n_categories): confusion[i]/=(confusion[i].sum()) fig = plt.figure() ax = fig.add_subplot(111) cax = ax.matshow(confusion.numpy()) fig.colorbar(cax) ax.set_xticklabels(['']+all_categories,rotation=90) ax.set_yticklabels(['']+all_categories) ax.xaxis.set_major_locator(ticker.MultipleLocator(1)) ax.yaxis.set_major_locator(ticker.MultipleLocator(1)) plt.show()
out:
你能夠從主軸上挑出明亮的點,它們能夠顯示出錯誤猜想的語言,例如:韓語猜想爲漢語,意大利語猜想爲西班牙語。希臘語的表現彷佛很好,可是英語不好(多是由於與其餘語言的重疊較多)