本系列教程爲pytorch官網文檔翻譯。本文對應官網地址:https://pytorch.org/tutorials/intermediate/char_rnn_generation_tutorial.htmlhtml
系列教程總目錄傳送門:我是一個傳送門python
本系列教程對應的 jupyter notebook 能夠在個人Github倉庫下載:git
咱們仍然使用手工搭建的包含幾個線性層的小型RNN。與以前的預測姓名最大的區別是:它不是「閱讀」輸入的全部字符而後生成一個預測分類,而是輸入一個分類而後在每一個時間步生成一個字母。循環預測字母來造成一個語言的語句一般被視做語言模型。網絡
數據下載通道: 點擊這裏下載數據集。解壓到當前工做目錄。app
就和上個預測姓名分類的教程同樣,咱們有一個姓名文件夾 data/names/[language].txt
,每一個姓名一行。咱們將它轉化爲一個 array, 轉爲ASCII字符,最後生成一個字典 {language: [name1, name2,...]}
dom
from __future__ import unicode_literals, print_function, division from io import open import glob import os import unicodedata import string all_letters = string.ascii_letters + " .,;'-" n_letters = len(all_letters) + 1 # Plus EOS marker def findFiles(path): return glob.glob(path) # Turn a Unicode string to plain ASCII, thanks to http://stackoverflow.com/a/518232/2809427 def unicodeToAscii(s): return ''.join( c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn' and c in all_letters ) # Read a file and split into lines def readLines(filename): lines = open(filename, encoding='utf-8').read().strip().split('\n') return [unicodeToAscii(line) for line in lines] # Build the category_lines dictionary, a list of lines per category category_lines = {} all_categories = [] for filename in findFiles('data/names/*.txt'): category = os.path.splitext(os.path.basename(filename))[0] all_categories.append(category) lines = readLines(filename) category_lines[category] = lines n_categories = len(all_categories) if n_categories == 0: raise RuntimeError('Data not found. Make sure that you downloaded data ' 'from https://download.pytorch.org/tutorial/data.zip and extract it to ' 'the current directory.') print('# categories:', n_categories, all_categories) print(unicodeToAscii("O'Néàl"))
out:函數
# categories: 18 ['Arabic', 'Chinese', 'Czech', 'Dutch', 'English', 'French', 'German', 'Greek', 'Irish', 'Italian', 'Japanese', 'Korean', 'Polish', 'Portuguese', 'Russian', 'Scottish', 'Spanish', 'Vietnamese'] O'Neal
新的網絡結果擴充了姓名識別的RNN網絡,它的輸入增長了一個分類Tensor,該張量一樣參與與其餘輸入的結合(concatenate)。分類張量也是一個one-hot向量。性能
咱們將輸出解釋爲下一個字母的機率。採樣時,最可能的輸出字母用做下一個輸入字母。ui
同時,模型增長了第二個線性層(在隱藏層的輸出組合以後),從而加強其性能。後續一個 dropout 層,它隨機將輸入置0(這裏的機率設置爲0.1),通常用來模糊輸入來達到規避過擬合的問題。在這裏,咱們將它用於網絡的末端,故意添加一些混亂進而增長採樣種類。
網絡模型以下所示:
import torch import torch.nn as nn class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(RNN,self).__init__() self.hidden_size = hidden_size self.i2h = nn.Linear(n_categories + input_size + hidden_size, hidden_size) self.i2o = nn.Linear(n_categories + input_size + hidden_size, output_size) self.o2o = nn.Linear(hidden_size + output_size, output_size) self.dropout = nn.Dropout(0.1) self.softmax = nn.LogSoftmax(dim=1) def forward(self, category, input, hidden): input_combined = torch.cat([category, input, hidden],dim=1) hidden = self.i2h(input_combined) output = self.i2o(input_combined) output_combined = torch.cat([hidden,output],1) output = self.o2o(output_combined) output = self.dropout(output) output = self.softmax(output) return output, hidden def initHidden(self): return torch.zeros(1, self.hidden_size)
首先,輔助函數用來獲取(category, line)對:
import random # Random item from a list def randomChoice(l): return l[random.randint(0, len(l)-1)] # Get a random category and random line from that category def randomTrainingPair(): category = randomChoice(all_categories) line = randomChoice(category_lines[category]) return category, line
對於每一個時間步(訓練詞語的每一個字母),網絡的輸入爲 (category, current letter, hidden state)
, 輸出爲 (next letter, next hidden state)
。所以對於每一個訓練集,咱們須要一個分類,一個輸入字母集合,還有一個目標字母集合。
因爲咱們須要在每一個時間步經過當前字母來預測下一個字母,字母對的形式應該相似於這樣,好比 "ABCD<EOS>"
, 則咱們會構建('A','B'),('B','C'),('C','D'),('D','E'),('E','EOS')。
用圖來表示以下:
分類張量是一個one-hot張量,大小爲 <1 x n_categories>
。在訓練的每一個時間步咱們都將其做爲輸入。這是衆多設計選擇的一個,它一樣能夠做爲初始隱藏狀態或其餘策略的一部分。
# one-hot vector for category def categoryTensor(category): li = all_categories.index(category) tensor = torch.zeros(1, n_categories) tensor[0][li]=1 return tensor # one-hot matrix of first to last letters (not including EOS) for input def inputTensor(line): tensor = torch.zeros(len(line),1, n_letters) for li in range(len(line)): letter = line[li] tensor[li][0][all_letters.find(letter)]=1 return tensor # LongTensor of second letter to end(EOS) for target def targetTensor(line): letter_indexes = [all_letters.find(line[li]) for li in range(1, len(line))] letter_indexes.append(n_letters-1) # EOS return torch.LongTensor(letter_indexes)
方便起見,在訓練過程當中咱們使用randomTrainingExample
函數來獲取一個隨機的 (category, line) 對,而後將其轉化爲輸入要求的 (category, input, target) 張量
# make category, input, and target tensors from a random category, line pair def randomTrainingExample(): category, line = randomTrainingPair() category_tensor = categoryTensor(category) input_line_tensor = inputTensor(line) target_line_tensor = targetTensor(line) return category_tensor, input_line_tensor, target_line_tensor
與分類相反,分類僅僅使用最後一層輸出,這裏咱們使用每一個時間步的輸出做爲預測,因此咱們須要計算每一個時間步的損失
autograd 的魔力使你可以簡單的將全部時間步的loss相加,而後在最後反向傳播。
criterion = nn.NLLLoss() learning_rate = 0.0005 def train(category_tensor, input_line_tensor, target_line_tensor): target_line_tensor.unsqueeze_(-1) hidden = rnn.initHidden() rnn.zero_grad() loss = 0 for i in range(input_line_tensor.size(0)): output, hidden = rnn(category_tensor, input_line_tensor[i], hidden) l = criterion(output, target_line_tensor[i]) loss+=l loss.backward() for p in rnn.parameters(): p.data.add_(-learning_rate, p.grad.data) return output, loss.item() / input_line_tensor.size(0)
爲了跟蹤訓練時間,這裏添加了一個 timeSince(timestep)
函數,該函數返回一個可讀字符串
import time import math def timeSince(since): now = time.time() s = now - since m = math.floor(s/60) s -= m*60 return '%dm %ds' %(m,s)
訓練依舊很花時間-調用訓練函數屢次,並在每一個 print_every
樣本後打印損失,同時在每一個 plot_every
樣本後保存損失到 all_losses
方便後續的可視化損失
rnn = RNN(n_letters, 128, n_letters) n_iters = 100000 print_every = 5000 plot_every = 500 all_losses = [] total_loss = 0 # Reset every plot_every iters start = time.time() for iter in range(1, n_iters + 1): output, loss = train(*randomTrainingExample()) total_loss += loss if iter % print_every == 0: print('%s (%d %d%%) %.4f' % (timeSince(start), iter, iter / n_iters * 100, loss)) if iter % plot_every == 0: all_losses.append(total_loss / plot_every) total_loss = 0
out:
0m 17s (5000 5%) 2.1339 0m 34s (10000 10%) 2.3110 0m 53s (15000 15%) 2.2874 1m 13s (20000 20%) 3.5956 1m 33s (25000 25%) 2.4674 1m 52s (30000 30%) 2.3219 2m 9s (35000 35%) 3.0257 2m 27s (40000 40%) 2.5090 2m 45s (45000 45%) 1.9921 3m 4s (50000 50%) 2.0124 3m 22s (55000 55%) 2.8580 3m 41s (60000 60%) 2.4451 3m 59s (65000 65%) 3.1174 4m 16s (70000 70%) 1.7301 4m 34s (75000 75%) 2.9455 4m 52s (80000 80%) 2.3166 5m 9s (85000 85%) 1.2998 5m 27s (90000 90%) 2.1184 5m 45s (95000 95%) 2.6679 6m 3s (100000 100%) 2.4100
import matplotlib.pyplot as plt import matplotlib.ticker as ticker %matplotlib inline plt.figure() plt.plot(all_losses)
out:
爲了示例,咱們給網絡輸入一個字母並詢問下一個字母是什麼,下一個字母再做爲下下個字母的預測輸入,直到輸出EOS token
output_name
,包含初始的字母output_name
,繼續另外一種策略是不須要給網絡決定一個初始字母,而是在訓練時包含字符串開始標記,並讓網絡選擇本身的初始字母
max_length = 20 # sample from a category and starting letter def sample(category, start_letter='A'): with torch.no_grad(): # no need to track history in sampling category_tensor = categoryTensor(category) input = inputTensor(start_letter) hidden = rnn.initHidden() output_name = start_letter for i in range(max_length): output, hidden = rnn(category_tensor, input[0],hidden) topv, topi = output.topk(1) topi = topi[0][0] if topi == n_letters -1: break else: letter = all_letters[topi] output_name+=letter input = inputTensor(letter) return output_name # get multiple samples from one category and multiple starting letters def samples(category, start_letters='ABC'): for start_letter in start_letters: print(sample(category, start_letter)) samples('Russian', 'RUS') samples('German', 'GER') samples('Spanish', 'SPA') samples('Irish', 'O')
out:
Ramanovov Uarin Shavani Garen Eren Roure Sangara Pare Allan Ollang