這個系列教程 是https://github.com/mattdesl/lwjgl-basics/wiki的系列翻譯。
精靈批處理(Sprite Batching)
若是咱們用上一節講到的debugTexture
去渲染全部的圖形,那麼咱們立刻就會遇到性能問題。這是由於咱們每次只把一個精靈發送到GPU,因此咱們要在一次draw call中把精靈批量發送到GPU。這樣的話咱們就要用到SpriteBatch
;git
介紹
咱們上一節講到,一個精靈只是肯定一個矩形的一些系列頂點。這裏的每一個定點有包括若干屬性:github
Position(x, y) - 在屏幕上的位置 TexCoord(s, t) - 紋理的取樣座標 Color(r, g, b, a) - 定點的顏色和透明度
大多數的SpriteBatch的代碼都是很易用的。可能在你遊戲的代碼中是這樣的:segmentfault
//called on game creation public void create() { //create a single batcher we will use throughout our application spriteBatch = new SpriteBatch(); } //called on frame render public void render() { //prepare the batch for rendering spriteBatch.begin(); //draw all of our sprites spriteBatch.draw(mySprite1, x, y); spriteBatch.draw(mySprite2, x, y); ... //end the batch, flushing the data to GPU spriteBatch.end(); } //called when the display is resized public void resize(int width, int height) { //notify the sprite batcher whenever the screen changes spriteBatch.resize(width, height); }
首先咱們調用begin()
,而後調用 spriteBatch.draw(...)
把精靈的頂點信息(座標,紋理座標,顏色)放入一個很是大的棧裏。
頂點在下列狀況發生前是不會被傳入GPU的:app
end
(),或者別的函數刷新batch 好比flush
()Sprite
他的Texture
和上一個Texture
不是同一個的時候batch
是被刷新的。這些是寫一個SpriteBatch以前必需要知道的。如上邊所說,用多個Texture
會致使多個draw call。這就是爲何咱們老是推薦利用Texture atlas
(紋理集),它可讓咱們渲染多個sprite
只用用一個draw call。ide
TextureRegion
像咱們上面討論的。在用Texture atlas
的時候咱們能夠得到更好的性能。那麼當咱們用要畫這個紋理的一部分的時候咱們要用到TextureRegion
這個工具類。它容許咱們在像素級別去指定圖片中咱們要渲染區域的位置,長和寬。讓咱們來舉個例子。下圖高亮區域就是咱們要渲染的sprite.
咱們能夠用下面的代碼去獲得一個TextureRegion:函數
//specify x, y, width, height of tile region = new TextureRegion(64, 64, 64, 64);
如咱們看到的TextureRegion
使咱們能夠得到一個子圖片而沒必要關心他的紋理座標。咱們用下面的代碼去渲染一個TextureRegion
:工具
... inside SpriteBatch begin / end ... spriteBatch.draw(region, x, y);
頂點顏色(Vertex Color)
咱們經過調整batch的顏色去改變sprites的顏色(頂點顏色)。
咱們用RGBA賦值的方式來描述顏色,那麼(1, 1, 1, 1)表明白色,(1, 0, 0, 1)表明紅色,A值用來調整不透明度。性能
spriteBatch.begin(); //draw calls will now use 50% opacity spriteBatch.setColor(1f, 1f, 1f, 0.5f); spriteBatch.draw(...); spriteBatch.draw(...); //draw calls will now use 100% opacity (default) spriteBatch.setColor(1f, 1f, 1f, 1f); spriteBatch.draw(...); spriteBatch.end();
是三角型不是四邊形(Triangles, not Quads!)
在以前的學習中咱們可能認爲紋理是四邊形的,其實在真實的環境當中大部分sprite batchers是用兩個三角形去表明一個四邊形。頂點的存儲順序是依賴具體引擎的,可是具體概念基本是以下圖的:
一個單獨的sprite包含兩個三角形或者說包含6個頂點。每一個頂點又包含8個屬性(X, Y, S, T, R, G, B, A),它們分別表明座標,紋理座標和顏色。這表示一個sprite就要把48個浮點數放入棧中。一些優化的sprite batching 可能會把48個值合併到一個浮點數當中,或者把表明顏色的四個浮點數合併到一個浮點數中。
Code學習
下面是一個SpriteBatch的實際代碼,其中有一些shader的代碼咱們之後會講到:優化
public class SpriteBatch { public static final String U_TEXTURE = "u_texture"; public static final String U_PROJ_VIEW = "u_projView"; public static final String ATTR_COLOR = "Color"; public static final String ATTR_POSITION = "Position"; public static final String ATTR_TEXCOORD = "TexCoord"; public static final String DEFAULT_VERT_SHADER = "uniform mat4 "+U_PROJ_VIEW+";\n" + "attribute vec4 "+ATTR_COLOR+";\n" + "attribute vec2 "+ATTR_TEXCOORD+";\n" + "attribute vec2 "+ATTR_POSITION+";\n" + "varying vec4 vColor;\n" + "varying vec2 vTexCoord; \n" + "void main() {\n" + " vColor = "+ATTR_COLOR+";\n" + " vTexCoord = "+ATTR_TEXCOORD+";\n" + " gl_Position = "+U_PROJ_VIEW+" * vec4("+ATTR_POSITION+".xy, 0, 1);\n" + "}"; public static final String DEFAULT_FRAG_SHADER = "uniform sampler2D "+U_TEXTURE+";\n" + "varying vec4 vColor;\n" + "varying vec2 vTexCoord;\n" + "void main(void) {\n" + " vec4 texColor = texture2D("+U_TEXTURE+", vTexCoord);\n" + " gl_FragColor = vColor * texColor;\n" + "}"; public static final List<VertexAttrib> ATTRIBUTES = Arrays.asList( new VertexAttrib(0, ATTR_POSITION, 2), new VertexAttrib(1, ATTR_COLOR, 4), new VertexAttrib(2, ATTR_TEXCOORD, 2)); static ShaderProgram defaultShader; public static int renderCalls = 0; protected FloatBuffer buf16; protected Matrix4f projMatrix; protected Matrix4f viewMatrix; protected Matrix4f projViewMatrix; protected Matrix4f transpositionPool; protected Texture texture; protected ShaderProgram program; protected VertexData data; private int idx; private int maxIndex; private float r=1f, g=1f, b=1f, a=1f; private boolean drawing = false; static ShaderProgram getDefaultShader() { return defaultShader==null ? new ShaderProgram(DEFAULT_VERT_SHADER, DEFAULT_FRAG_SHADER, ATTRIBUTES) : defaultShader; } public SpriteBatch(ShaderProgram program, int size) { this.program = program; //later we can do some abstraction to replace this with VBOs... this.data = new VertexArray(size * 6, ATTRIBUTES); //max indices before we need to flush the renderer maxIndex = size * 6; updateMatrices(); } public SpriteBatch(int size) { this(getDefaultShader(), size); } public SpriteBatch() { this(1000); } public Matrix4f getViewMatrix() { return viewMatrix; } public void setColor(float r, float g, float b, float a) { this.r = r; this.g = g; this.b = b; this.a = a; } /** * Call to multiply the the projection with the view matrix and save * the result in the uniform mat4 {@value #U_PROJ_VIEW}. */ public void updateMatrices() { // Create projection matrix: projMatrix = MathUtil.toOrtho2D(projMatrix, 0, 0, Display.getWidth(), Display.getHeight()); // Create view Matrix, if not present: if (viewMatrix == null) { viewMatrix = new Matrix4f(); } // Multiply the transposed projection matrix with the view matrix: projViewMatrix = Matrix4f.mul( Matrix4f.transpose(projMatrix, transpositionPool), viewMatrix, projViewMatrix); program.use(); // Store the the multiplied matrix in the "projViewMatrix"-uniform: program.storeUniformMat4(U_PROJ_VIEW, projViewMatrix, false); //upload texcoord 0 int tex0 = program.getUniformLocation(U_TEXTURE); if (tex0!=-1) glUniform1i(tex0, 0); } public void begin() { if (drawing) throw new IllegalStateException("must not be drawing before calling begin()"); drawing = true; program.use(); idx = 0; renderCalls = 0; texture = null; } public void end() { if (!drawing) throw new IllegalStateException("must be drawing before calling end()"); drawing = false; flush(); } public void flush() { if (idx>0) { data.flip(); render(); idx = 0; data.clear(); } } public void drawRegion(Texture tex, float srcX, float srcY, float srcWidth, float srcHeight, float dstX, float dstY) { drawRegion(tex, srcX, srcY, srcWidth, srcHeight, dstX, dstY, srcWidth, srcHeight); } public void drawRegion(Texture tex, float srcX, float srcY, float srcWidth, float srcHeight, float dstX, float dstY, float dstWidth, float dstHeight) { float u = srcX / tex.width; float v = srcY / tex.height; float u2 = (srcX+srcWidth) / tex.width; float v2 = (srcY+srcHeight) / tex.height; draw(tex, dstX, dstY, dstWidth, dstHeight, u, v, u2, v2); } public void draw(Texture tex, float x, float y) { draw(tex, x, y, tex.width, tex.height); } public void draw(Texture tex, float x, float y, float width, float height) { draw(tex, x, y, width, height, 0, 0, 1, 1); } public void draw(Texture tex, float x, float y, float width, float height, float u, float v, float u2, float v2) { checkFlush(tex); //top left, top right, bottom left vertex(x, y, r, g, b, a, u, v); vertex(x+width, y, r, g, b, a, u2, v); vertex(x, y+height, r, g, b, a, u, v2); //top right, bottom right, bottom left vertex(x+width, y, r, g, b, a, u2, v); vertex(x+width, y+height, r, g, b, a, u2, v2); vertex(x, y+height, r, g, b, a, u, v2); } /** * Renders a texture using custom vertex attributes; e.g. for different vertex colours. * This will ignore the current batch color. * * @param tex the texture to use * @param vertices an array of 6 vertices, each holding 8 attributes (total = 48 elements) * @param offset the offset from the vertices array to start from */ public void draw(Texture tex, float[] vertices, int offset) { checkFlush(tex); data.put(vertices, offset, data.getTotalNumComponents() * 6); idx += 6; } VertexData vertex(float x, float y, float r, float g, float b, float a, float u, float v) { data.put(x).put(y).put(r).put(g).put(b).put(a).put(u).put(v); idx++; return data; } protected void checkFlush(Texture texture) { if (texture==null) throw new NullPointerException("null texture"); //we need to bind a different texture/type. this is //for convenience; ideally the user should order //their rendering wisely to minimize texture binds if (texture!=this.texture || idx >= maxIndex) { //apply the last texture flush(); this.texture = texture; } } private void render() { if (texture!=null) texture.bind(); data.bind(); data.draw(GL_TRIANGLES, 0, idx); data.unbind(); renderCalls++; } }