以前角點檢測的時候提到過角點檢測的算法,第一個是cornerHarris計算角點,可是這種角點檢測算法容易出現聚簇現象以及角點信息有丟失和位置偏移現象,因此後面又提出一種名爲算法
shi_tomasi的角點檢測算法,名稱goodFeatureToTrack,opencv的feature2D接口集成了這種算法,名稱爲GFTTDetector,接口以下spa
Ptr<GFTTDetector> create( int maxCorners=1000, double qualityLevel=0.01, double minDistance=1,code
int blockSize=3, bool useHarrisDetector=false, double k=0.04 );blog
maxCorners 最大角點數目 qualityLevel角點能夠接受的最小特徵值,通常0.1或者0.01,不超過1 minDistance 加點之間的最小距離接口
blockSize倒數自相關矩陣的鄰域範圍 useHarrisDetector 是否使用角點檢測 khessian自相關矩陣的相對權重係數 通常爲0.04it
使用代碼以下opencv
1 int main(int argc,char* argv[]) 2 { 3 Mat srcImage = imread("F:\\opencv\\OpenCVImage\\FeatureDetectSrc1.jpg"); 4 Mat srcGrayImage; 5 if (srcImage.channels() == 3) 6 { 7 cvtColor(srcImage,srcGrayImage,CV_RGB2GRAY); 8 } 9 else 10 { 11 srcImage.copyTo(srcGrayImage); 12 } 13 vector<KeyPoint>detectKeyPoint; 14 Mat keyPointImage1,keyPointImage2; 15 16 Ptr<GFTTDetector> gftt = GFTTDetector::create(); 17 gftt->detect(srcGrayImage,detectKeyPoint); 18 drawKeypoints(srcImage,detectKeyPoint,keyPointImage1,Scalar(0,0,255),DrawMatchesFlags::DRAW_RICH_KEYPOINTS); 19 drawKeypoints(srcImage,detectKeyPoint,keyPointImage2,Scalar(0,0,255),DrawMatchesFlags::DEFAULT); 20 21 imshow("src image",srcImage); 22 imshow("keyPoint image1",keyPointImage1); 23 imshow("keyPoint image2",keyPointImage2); 24 25 imwrite("F:\\opencv\\OpenCVImage\\FeatureDetectSrc1GFTTKeyPointImageDefault.jpg",keyPointImage2); 26 27 waitKey(0); 28 return 0; 29 }
顯示圖像class