網絡流(最大流):CodeForces 499E Array and Operations

You have written on a piece of paper an array of n positive integers a[1], a[2], ..., a[n] and m good pairs of integers (i1, j1), (i2, j2), ..., (im, jm). Each good pair (ik, jk) meets the following conditions: ik + jk is an odd number and 1 ≤ ik < jk ≤ n.ios

 

In one operation you can perform a sequence of actions:網絡

  • take one of the good pairs (ik, jk) and some integer v (v > 1), which divides both numbers a[ik] and a[jk];
  • divide both numbers by v, i. e. perform the assignments: and .

Determine the maximum number of operations you can sequentially perform on the given array. Note that one pair may be used several times in the described operations.app

 

Input

The first line contains two space-separated integers n, m (2 ≤ n ≤ 100, 1 ≤ m ≤ 100).ide

The second line contains n space-separated integers a[1], a[2], ..., a[n] (1 ≤ a[i] ≤ 109) — the description of the array.spa

The following m lines contain the description of good pairs. The k-th line contains two space-separated integers ik, jk (1 ≤ ik < jk ≤ n, ik + jk is an odd number).code

It is guaranteed that all the good pairs are distinct.orm

 

Output

Output the answer for the problem.blog

 

Sample Input

Input
3 2
8 3 8
1 2
2 3
Output
0
Input
3 2
8 12 8
1 2
2 3
Output
2
  將點拆成多個素數,而後套用網絡流,還有一種思路是建不少次圖,分開處理素數的匹配。
  1 #include <iostream>
  2 #include <cstring>
  3 #include <cstdio>
  4 using namespace std;
  5 const int INF=1000000000;
  6 const int N=110,M=1010,K=35010;
  7 int P[K],cntx;bool check[K];
  8 void Linear_Shaker(){
  9     for(int i=2;i<K;i++){
 10         if(!check[i])P[++cntx]=i;
 11         for(int j=1;j<=cntx;j++){
 12             if(i*P[j]>=K)break;
 13             check[i*P[j]]=true;
 14             if(i%P[j]==0)break;
 15         }
 16     }
 17 }
 18 int v[N][12],c[N][12],id[N][12],h[N],idx;
 19 int cnt=1,fir[M],to[M*20],nxt[M*20],cap[M*20];
 20 int dis[M],gap[M],path[M],fron[M],q[M],f,b;
 21 void add(int a,int b,int c){
 22     nxt[++cnt]=fir[a];
 23     to[fir[a]=cnt]=b;
 24     cap[cnt]=c;
 25 }
 26 
 27 void addedge(int a,int b,int c){
 28     //printf("%d %d\n",a,b);
 29     add(a,b,c);add(b,a,0);
 30 }
 31 
 32 bool BFS(int S,int T){
 33     q[f=b]=T;dis[T]=1;
 34     while(f<=b){
 35         int x=q[f++];
 36         for(int i=fir[x];i;i=nxt[i])
 37             if(!dis[to[i]]){
 38                 dis[to[i]]=dis[x]+1;
 39                 q[++b]=to[i];
 40             }
 41     }
 42     return dis[S];
 43 }
 44 
 45 int Max_Flow(int S,int T){
 46     if(!BFS(S,T))return 0;
 47     for(int i=S;i<=T;i++)fron[i]=fir[i];
 48     for(int i=S;i<=T;i++)gap[dis[i]]+=1;
 49     int ret=0,f,p=S;
 50     while(dis[S]<=T+1){
 51         if(p==T){
 52             f=INF;
 53             while(p!=S){
 54                 f=min(f,cap[path[p]]);
 55                 p=to[path[p]^1];
 56             }ret+=f,p=T;
 57             while(p!=S){
 58                 cap[path[p]]-=f;
 59                 cap[path[p]^1]+=f;
 60                 p=to[path[p]^1];
 61             }
 62         }
 63         for(int &i=fron[p];i;i=nxt[i])
 64             if(cap[i]&&dis[to[i]]==dis[p]-1){
 65                 path[p=to[i]]=i;break;
 66             }
 67         if(!fron[p]){
 68             if(!--gap[dis[p]])break;int Min=T+1;
 69             for(int i=fir[p];i;i=nxt[i])
 70                 if(cap[i])Min=min(Min,dis[to[i]]);
 71             gap[dis[p]=Min+1]+=1;fron[p]=fir[p];    
 72             if(p!=S)p=to[path[p]^1];
 73         }    
 74     }
 75     return ret;
 76 }
 77 
 78 int n,m,S,T,num[N];
 79 int G[N][N];
 80 int main(){
 81     Linear_Shaker();
 82     scanf("%d%d",&n,&m);
 83     for(int i=1;i<=n;i++){
 84         scanf("%d",&num[i]);
 85         for(int j=1;j<=cntx;j++){
 86             if(P[j]*P[j]>num[i])break;
 87             if(num[i]%P[j]==0){
 88                 v[i][h[i]]=P[j];
 89                 while(num[i]%P[j]==0){
 90                     c[i][h[i]]+=1;
 91                     num[i]/=P[j];
 92                 }h[i]+=1;
 93             }
 94         }
 95         if(num[i]!=1){
 96             v[i][h[i]]=num[i];
 97             c[i][h[i]++]=1;
 98         }
 99     }
100     /*
101     for(int i=1;i<=n;i++){
102         for(int j=0;j<h[i];j++)
103             printf("<%d %d> ",v[i][j],c[i][j]);
104         puts("");
105     }
106     */
107     for(int i=1,a,b;i<=m;i++){
108         scanf("%d%d",&a,&b);
109         if(a%2)swap(a,b);
110         G[a][b]=1;
111     }
112     for(int i=1;i<=n;i++)
113         for(int j=0;j<h[i];j++)
114             id[i][j]=++idx;
115     S=0;T=idx+1;
116     for(int i=1;i<=n;i++)
117         for(int j=0;j<h[i];j++){
118             if(i%2==0)addedge(S,id[i][j],c[i][j]);
119             else addedge(id[i][j],T,c[i][j]);
120         }
121     for(int i=2;i<=n;i+=2)
122         for(int j=1;j<=n;j+=2)if(G[i][j])
123             for(int x=0;x<h[i];x++)
124                 for(int y=0;y<h[j];y++)
125                     if(v[i][x]==v[j][y])
126                         addedge(id[i][x],id[j][y],INF);
127     printf("%d\n",Max_Flow(S,T));                    
128     return 0;
129 }
相關文章
相關標籤/搜索