You have written on a piece of paper an array of n positive integers a[1], a[2], ..., a[n] and m good pairs of integers (i1, j1), (i2, j2), ..., (im, jm). Each good pair (ik, jk) meets the following conditions: ik + jk is an odd number and 1 ≤ ik < jk ≤ n.ios
In one operation you can perform a sequence of actions:網絡
Determine the maximum number of operations you can sequentially perform on the given array. Note that one pair may be used several times in the described operations.app
The first line contains two space-separated integers n, m (2 ≤ n ≤ 100, 1 ≤ m ≤ 100).ide
The second line contains n space-separated integers a[1], a[2], ..., a[n] (1 ≤ a[i] ≤ 109) — the description of the array.spa
The following m lines contain the description of good pairs. The k-th line contains two space-separated integers ik, jk (1 ≤ ik < jk ≤ n, ik + jk is an odd number).code
It is guaranteed that all the good pairs are distinct.orm
Output the answer for the problem.blog
3 2
8 3 8
1 2
2 3
0
3 2
8 12 8
1 2
2 3
2
將點拆成多個素數,而後套用網絡流,還有一種思路是建不少次圖,分開處理素數的匹配。
1 #include <iostream> 2 #include <cstring> 3 #include <cstdio> 4 using namespace std; 5 const int INF=1000000000; 6 const int N=110,M=1010,K=35010; 7 int P[K],cntx;bool check[K]; 8 void Linear_Shaker(){ 9 for(int i=2;i<K;i++){ 10 if(!check[i])P[++cntx]=i; 11 for(int j=1;j<=cntx;j++){ 12 if(i*P[j]>=K)break; 13 check[i*P[j]]=true; 14 if(i%P[j]==0)break; 15 } 16 } 17 } 18 int v[N][12],c[N][12],id[N][12],h[N],idx; 19 int cnt=1,fir[M],to[M*20],nxt[M*20],cap[M*20]; 20 int dis[M],gap[M],path[M],fron[M],q[M],f,b; 21 void add(int a,int b,int c){ 22 nxt[++cnt]=fir[a]; 23 to[fir[a]=cnt]=b; 24 cap[cnt]=c; 25 } 26 27 void addedge(int a,int b,int c){ 28 //printf("%d %d\n",a,b); 29 add(a,b,c);add(b,a,0); 30 } 31 32 bool BFS(int S,int T){ 33 q[f=b]=T;dis[T]=1; 34 while(f<=b){ 35 int x=q[f++]; 36 for(int i=fir[x];i;i=nxt[i]) 37 if(!dis[to[i]]){ 38 dis[to[i]]=dis[x]+1; 39 q[++b]=to[i]; 40 } 41 } 42 return dis[S]; 43 } 44 45 int Max_Flow(int S,int T){ 46 if(!BFS(S,T))return 0; 47 for(int i=S;i<=T;i++)fron[i]=fir[i]; 48 for(int i=S;i<=T;i++)gap[dis[i]]+=1; 49 int ret=0,f,p=S; 50 while(dis[S]<=T+1){ 51 if(p==T){ 52 f=INF; 53 while(p!=S){ 54 f=min(f,cap[path[p]]); 55 p=to[path[p]^1]; 56 }ret+=f,p=T; 57 while(p!=S){ 58 cap[path[p]]-=f; 59 cap[path[p]^1]+=f; 60 p=to[path[p]^1]; 61 } 62 } 63 for(int &i=fron[p];i;i=nxt[i]) 64 if(cap[i]&&dis[to[i]]==dis[p]-1){ 65 path[p=to[i]]=i;break; 66 } 67 if(!fron[p]){ 68 if(!--gap[dis[p]])break;int Min=T+1; 69 for(int i=fir[p];i;i=nxt[i]) 70 if(cap[i])Min=min(Min,dis[to[i]]); 71 gap[dis[p]=Min+1]+=1;fron[p]=fir[p]; 72 if(p!=S)p=to[path[p]^1]; 73 } 74 } 75 return ret; 76 } 77 78 int n,m,S,T,num[N]; 79 int G[N][N]; 80 int main(){ 81 Linear_Shaker(); 82 scanf("%d%d",&n,&m); 83 for(int i=1;i<=n;i++){ 84 scanf("%d",&num[i]); 85 for(int j=1;j<=cntx;j++){ 86 if(P[j]*P[j]>num[i])break; 87 if(num[i]%P[j]==0){ 88 v[i][h[i]]=P[j]; 89 while(num[i]%P[j]==0){ 90 c[i][h[i]]+=1; 91 num[i]/=P[j]; 92 }h[i]+=1; 93 } 94 } 95 if(num[i]!=1){ 96 v[i][h[i]]=num[i]; 97 c[i][h[i]++]=1; 98 } 99 } 100 /* 101 for(int i=1;i<=n;i++){ 102 for(int j=0;j<h[i];j++) 103 printf("<%d %d> ",v[i][j],c[i][j]); 104 puts(""); 105 } 106 */ 107 for(int i=1,a,b;i<=m;i++){ 108 scanf("%d%d",&a,&b); 109 if(a%2)swap(a,b); 110 G[a][b]=1; 111 } 112 for(int i=1;i<=n;i++) 113 for(int j=0;j<h[i];j++) 114 id[i][j]=++idx; 115 S=0;T=idx+1; 116 for(int i=1;i<=n;i++) 117 for(int j=0;j<h[i];j++){ 118 if(i%2==0)addedge(S,id[i][j],c[i][j]); 119 else addedge(id[i][j],T,c[i][j]); 120 } 121 for(int i=2;i<=n;i+=2) 122 for(int j=1;j<=n;j+=2)if(G[i][j]) 123 for(int x=0;x<h[i];x++) 124 for(int y=0;y<h[j];y++) 125 if(v[i][x]==v[j][y]) 126 addedge(id[i][x],id[j][y],INF); 127 printf("%d\n",Max_Flow(S,T)); 128 return 0; 129 }