彈跳球在Processing中是一個很是經典的動畫效果,就是一個球在兩堵牆中間不停地碰撞,能夠在Processing中使用如下代碼實現:函數
float circleX; float xspeed = 10; void setup(){ size(640, 360); circleX = 0; } void draw(){ background(50); fill(150); stroke(255); ellipse(circleX, height/2, 20, 20); circleX = circleX + xspeed; if(circleX > width || circleX < 0){ xspeed = xspeed * -1; } }
代碼的關鍵是在xspeed
這個變量上,由於在draw
函數中,代碼一直循環執行,因此小球的橫座標circleX
是隨着xspeed
變化的。當circleX
的位置大於width
或者小於0的時候,xspeed
經過* -1
變成反向。動畫
若是咱們想模擬小球撞到牆後,能量損失的過程,能夠把xspeed = speed * -1
變爲 xspeed = xspeed * -0.9
spa
可是發現小球到達最右邊的時候,像是被卡住了似的,咱們能夠分析小球到達右邊時候circleX
和xspeed
的變化。code
若是小球的circleX
等於370,那麼xspeed
變爲-9,因此下個循環circleX
變爲361,仍是大於360,這時候xspeed
變爲8.1,下個循環circleX
變爲369.1,這時候xspeed
變爲-7.29。咱們把它們可能的值列在下面:blog
circleX = 370, xspeed = -9 circleX = 361, xspeed = 8.1 circleX = 369.1, xspeed = -7.29 circleX = 361.81, xspeed = 6.561 circleX = 368.371, xspeed = -5.9049 circleX = 362.461, xspeed = 5.31414 ...
從上面值能夠看出,小球一直在360-370這個區間震盪,沒法返回。能夠改爲下面的代碼,限制小球不能超過整個畫布的大小,就能夠讓小球正常返回,否則就會在邊緣震盪:ip
if(circleX > width){ xspeed = xspeed * -0.9; circleX = width; } if(circleX < 0){ xspeed = xspeed * -0.9; circleX = 0; }