Swoole
中爲了更好的進行內存管理,減小頻繁分配釋放內存空間形成的損耗和內存碎片,程序設計並實現了三種不一樣功能的內存池:FixedPool
,RingBuffer
和 MemoryGlobal
。react
其中 MemoryGlobal
用於全局變量 SwooleG.memory_pool
,RingBuffer
用於 reactor
線程的緩衝區,FixedPool
用於 swoole_table
共享內存表。數組
swMemoryPool
內存池數據結構不管是哪一種內存池,它的基礎數據結構都是 swMemoryPool
:安全
typedef struct _swMemoryPool { void *object; void* (*alloc)(struct _swMemoryPool *pool, uint32_t size); void (*free)(struct _swMemoryPool *pool, void *ptr); void (*destroy)(struct _swMemoryPool *pool); } swMemoryPool;
能夠看出來, swMemoryPool
更加相似於接口,規定了內存池須要定義的函數。swoole
MemoryGlobal
內存池實現MemoryGlobal
數據結構首先看一下 MemoryGlobal
的數據結構:數據結構
typedef struct _swMemoryGlobal_page { struct _swMemoryGlobal_page *next; char memory[0]; } swMemoryGlobal_page; typedef struct _swMemoryGlobal { uint8_t shared; uint32_t pagesize; swLock lock; swMemoryGlobal_page *root_page; swMemoryGlobal_page *current_page; uint32_t current_offset; } swMemoryGlobal;
能夠很明顯的看出,MemoryGlobal
實際上就是一個單鏈表,root_page
是鏈表的頭,current_page
就是鏈表的尾,current_offset
指的是最後一個鏈表元素的偏移量。函數
比較特殊的是 MemoryGlobal
單鏈表內存池的內存只能增長不會減小。fetch
MemoryGlobal
的建立#define SW_MIN_PAGE_SIZE 4096 swMemoryPool* swMemoryGlobal_new(uint32_t pagesize, uint8_t shared) { swMemoryGlobal gm, *gm_ptr; assert(pagesize >= SW_MIN_PAGE_SIZE); bzero(&gm, sizeof(swMemoryGlobal)); gm.shared = shared; gm.pagesize = pagesize; swMemoryGlobal_page *page = swMemoryGlobal_new_page(&gm); if (page == NULL) { return NULL; } if (swMutex_create(&gm.lock, shared) < 0) { return NULL; } gm.root_page = page; gm_ptr = (swMemoryGlobal *) page->memory; gm.current_offset += sizeof(swMemoryGlobal); swMemoryPool *allocator = (swMemoryPool *) (page->memory + gm.current_offset); gm.current_offset += sizeof(swMemoryPool); allocator->object = gm_ptr; allocator->alloc = swMemoryGlobal_alloc; allocator->destroy = swMemoryGlobal_destroy; allocator->free = swMemoryGlobal_free; memcpy(gm_ptr, &gm, sizeof(gm)); return allocator; }
MemoryGlobal
內存不得小於 2k
MemoryGlobal
的 current_offset
被初始化爲 swMemoryGlobal
與 swMemoryPool
的大小之和返回的 allocator
類型是 swMemoryPool
,其內存結構爲:ui
swMemoryGlobal | swMemoryPool | memory |
---|
static swMemoryGlobal_page* swMemoryGlobal_new_page(swMemoryGlobal *gm) { swMemoryGlobal_page *page = (gm->shared == 1) ? sw_shm_malloc(gm->pagesize) : sw_malloc(gm->pagesize); if (page == NULL) { return NULL; } bzero(page, gm->pagesize); page->next = NULL; if (gm->current_page != NULL) { gm->current_page->next = page; } gm->current_page = page; gm->current_offset = 0; return page; }
鏈表元素的建立比較簡單,就是申請內存,初始化單鏈表的各個變量。this
MemoryGlobal
內存的申請static void *swMemoryGlobal_alloc(swMemoryPool *pool, uint32_t size) { swMemoryGlobal *gm = pool->object; gm->lock.lock(&gm->lock); if (size > gm->pagesize - sizeof(swMemoryGlobal_page)) { swWarn("failed to alloc %d bytes, exceed the maximum size[%d].", size, gm->pagesize - (int) sizeof(swMemoryGlobal_page)); gm->lock.unlock(&gm->lock); return NULL; } if (gm->current_offset + size > gm->pagesize - sizeof(swMemoryGlobal_page)) { swMemoryGlobal_page *page = swMemoryGlobal_new_page(gm); if (page == NULL) { swWarn("swMemoryGlobal_alloc alloc memory error."); gm->lock.unlock(&gm->lock); return NULL; } gm->current_page = page; } void *mem = gm->current_page->memory + gm->current_offset; gm->current_offset += size; gm->lock.unlock(&gm->lock); return mem; }
pagesize
,直接返回錯誤。current_offset
,解鎖互斥鎖,返回內存地址。MemoryGlobal
內存的釋放與銷燬static void swMemoryGlobal_free(swMemoryPool *pool, void *ptr) { swWarn("swMemoryGlobal Allocator don't need to release."); } static void swMemoryGlobal_destroy(swMemoryPool *poll) { swMemoryGlobal *gm = poll->object; swMemoryGlobal_page *page = gm->root_page; swMemoryGlobal_page *next; do { next = page->next; sw_shm_free(page); page = next; } while (page); }
MemoryGlobal
不須要進行內存的釋放MemoryGlobal
的銷燬就是循環單鏈表,而後釋放內存RingBuffer
內存池實現RingBuffer
的數據結構RingBuffer
相似於一個循環數組,每一次申請的一塊內存在該數組中佔據一個位置,這些內存塊是能夠不等長的,所以每一個內存塊須要有一個記錄其長度的變量。atom
typedef struct { uint16_t lock; uint16_t index; uint32_t length; char data[0]; } swRingBuffer_item; typedef struct { uint8_t shared; uint8_t status; uint32_t size; uint32_t alloc_offset; uint32_t collect_offset; uint32_t alloc_count; sw_atomic_t free_count; void *memory; } swRingBuffer;
swRingBuffer
中很是重要的成員變量是 alloc_offset
與 collect_offset
,alloc_offset
是當前循環數組中的起始地址,collect_offset
表明當前循環數組中能夠被回收的內存地址。free_count
是當前循環數組中能夠被回收的個數。status
爲 0 表明循環數組當前佔用的內存空間並無越過數組的結尾,也就是其地址是連續的,爲 1 表明循環數組當前佔用的內存空間一部分在循環數組的尾部,一部分在數組的頭部。RingBuffer
的建立RingBuffer
的建立相似於 MemoryGlobal
:
RingBuffer | swMemoryPool | memory |
---|
swMemoryPool *swRingBuffer_new(uint32_t size, uint8_t shared) { void *mem = (shared == 1) ? sw_shm_malloc(size) : sw_malloc(size); if (mem == NULL) { swWarn("malloc(%d) failed.", size); return NULL; } swRingBuffer *object = mem; mem += sizeof(swRingBuffer); bzero(object, sizeof(swRingBuffer)); object->size = (size - sizeof(swRingBuffer) - sizeof(swMemoryPool)); object->shared = shared; swMemoryPool *pool = mem; mem += sizeof(swMemoryPool); pool->object = object; pool->destroy = swRingBuffer_destory; pool->free = swRingBuffer_free; pool->alloc = swRingBuffer_alloc; object->memory = mem; swDebug("memory: ptr=%p", mem); return pool; }
RingBuffer
內存的申請free_count
大於 0,說明此時數組中有待回收的內存,須要進行內存回收collect_offset - alloc_offset
若當前佔用的內存是連續的,
collect_offset
距離尾部的內存大於申請的內存數,那麼剩餘的容量就是 size - alloc_offset
swRingBuffer_item
數組元素,並標誌爲待回收元素,設置 status
爲 1,設置 alloc_offset
爲數組首地址,此時剩餘的容量就是 collect_offset
的地址static void* swRingBuffer_alloc(swMemoryPool *pool, uint32_t size) { assert(size > 0); swRingBuffer *object = pool->object; swRingBuffer_item *item; uint32_t capacity; uint32_t alloc_size = size + sizeof(swRingBuffer_item); if (object->free_count > 0) { swRingBuffer_collect(object); } if (object->status == 0) { if (object->alloc_offset + alloc_size >= (object->size - sizeof(swRingBuffer_item))) { uint32_t skip_n = object->size - object->alloc_offset; if (skip_n >= sizeof(swRingBuffer_item)) { item = object->memory + object->alloc_offset; item->lock = 0; item->length = skip_n - sizeof(swRingBuffer_item); sw_atomic_t *free_count = &object->free_count; sw_atomic_fetch_add(free_count, 1); } object->alloc_offset = 0; object->status = 1; capacity = object->collect_offset - object->alloc_offset; } else { capacity = object->size - object->alloc_offset; } } else { capacity = object->collect_offset - object->alloc_offset; } if (capacity < alloc_size) { return NULL; } item = object->memory + object->alloc_offset; item->lock = 1; item->length = size; item->index = object->alloc_count; object->alloc_offset += alloc_size; object->alloc_count ++; swDebug("alloc: ptr=%p", (void * )((void * )item->data - object->memory)); return item->data; }
RingBuffer
內存的回收RingBuffer
的 free_count
大於 0 的時候,就說明當前內存池存在須要回收的元素,每次在申請新的內存時,都會調用這個函數來回收內存。static void swRingBuffer_collect(swRingBuffer *object) { swRingBuffer_item *item; sw_atomic_t *free_count = &object->free_count; int count = object->free_count; int i; uint32_t n_size; for (i = 0; i < count; i++) { item = object->memory + object->collect_offset; if (item->lock == 0) { n_size = item->length + sizeof(swRingBuffer_item); object->collect_offset += n_size; if (object->collect_offset + sizeof(swRingBuffer_item) >object->size || object->collect_offset >= object->size) { object->collect_offset = 0; object->status = 0; } sw_atomic_fetch_sub(free_count, 1); } else { break; } } }
RingBuffer
內存的釋放內存的釋放很簡單,只須要設置 lock
爲 0,而且增長 free_count
的數量便可:
static void swRingBuffer_free(swMemoryPool *pool, void *ptr) { swRingBuffer *object = pool->object; swRingBuffer_item *item = ptr - sizeof(swRingBuffer_item); assert(ptr >= object->memory); assert(ptr <= object->memory + object->size); assert(item->lock == 1); if (item->lock != 1) { swDebug("invalid free: index=%d, ptr=%p", item->index, (void * )((void * )item->data - object->memory)); } else { item->lock = 0; } swDebug("free: ptr=%p", (void * )((void * )item->data - object->memory)); sw_atomic_t *free_count = &object->free_count; sw_atomic_fetch_add(free_count, 1); }
RingBuffer
內存的銷燬static void swRingBuffer_destory(swMemoryPool *pool) { swRingBuffer *object = pool->object; if (object->shared) { sw_shm_free(object); } else { sw_free(object); } }
RingBuffer
除了原子鎖以外就沒有任何鎖了,在申請與釋放過程的代碼中也沒有看出來是線程安全的無鎖數據結構,我的認爲 RingBuffer
並不是是線程安全/進程安全的數據結構,所以利用這個內存池申請共享內存時,須要本身進行加鎖。FixedPool
內存池實現FixedPool
數據結構FixedPool
是隨機分配內存池,將一整塊內存空間切分紅等大小的一個個小塊,每次分配其中的一個小塊做爲要使用的內存,這些小塊以雙向鏈表的形式存儲。
typedef struct _swFixedPool_slice { uint8_t lock; struct _swFixedPool_slice *next; struct _swFixedPool_slice *pre; char data[0]; } swFixedPool_slice; typedef struct _swFixedPool { void *memory; size_t size; swFixedPool_slice *head; swFixedPool_slice *tail; /** * total memory size */ uint32_t slice_num; /** * memory usage */ uint32_t slice_use; /** * Fixed slice size, not include the memory used by swFixedPool_slice */ uint32_t slice_size; /** * use shared memory */ uint8_t shared; } swFixedPool;
FixedPool
內存池的建立FixedPool
內存池的建立有兩個函數 swFixedPool_new
與 swFixedPool_new2
,其中 swFixedPool_new2
是利用已有的內存基礎上來構建內存池,這個也是 table
共享內存表建立的方法。
swMemoryPool* swFixedPool_new2(uint32_t slice_size, void *memory, size_t size) { swFixedPool *object = memory; memory += sizeof(swFixedPool); bzero(object, sizeof(swFixedPool)); object->slice_size = slice_size; object->size = size - sizeof(swMemoryPool) - sizeof(swFixedPool); object->slice_num = object->size / (slice_size + sizeof(swFixedPool_slice)); swMemoryPool *pool = memory; memory += sizeof(swMemoryPool); bzero(pool, sizeof(swMemoryPool)); pool->object = object; pool->alloc = swFixedPool_alloc; pool->free = swFixedPool_free; pool->destroy = swFixedPool_destroy; object->memory = memory; /** * init linked list */ swFixedPool_init(object); return pool; }
內存池的建立和前兩個大同小異,只是此次多了 swFixedPool_init
這個構建雙向鏈表的過程:
static void swFixedPool_init(swFixedPool *object) { swFixedPool_slice *slice; void *cur = object->memory; void *max = object->memory + object->size; do { slice = (swFixedPool_slice *) cur; bzero(slice, sizeof(swFixedPool_slice)); if (object->head != NULL) { object->head->pre = slice; slice->next = object->head; } else { object->tail = slice; } object->head = slice; cur += (sizeof(swFixedPool_slice) + object->slice_size); if (cur < max) { slice->pre = (swFixedPool_slice *) cur; } else { slice->pre = NULL; break; } } while (1); }
能夠看出來,程序從內存空間的首部開始,每次初始化一個 slice
大小的空間,並插入到鏈表的頭部,所以整個鏈表的內存地址和 memory
的地址是相反的。
FixedPool
內存池的申請static void* swFixedPool_alloc(swMemoryPool *pool, uint32_t size) { swFixedPool *object = pool->object; swFixedPool_slice *slice; slice = object->head; if (slice->lock == 0) { slice->lock = 1; object->slice_use ++; /** * move next slice to head (idle list) */ object->head = slice->next; slice->next->pre = NULL; /* * move this slice to tail (busy list) */ object->tail->next = slice; slice->next = NULL; slice->pre = object->tail; object->tail = slice; return slice->data; } else { return NULL; } }
FixedPool
內存池的釋放static void swFixedPool_free(swMemoryPool *pool, void *ptr) { swFixedPool *object = pool->object; swFixedPool_slice *slice; assert(ptr > object->memory && ptr < object->memory + object->size); slice = ptr - sizeof(swFixedPool_slice); if (slice->lock) { object->slice_use--; } slice->lock = 0; //list head, AB if (slice->pre == NULL) { return; } //list tail, DE if (slice->next == NULL) { slice->pre->next = NULL; object->tail = slice->pre; } //middle BCD else { slice->pre->next = slice->next; slice->next->pre = slice->pre; } slice->pre = NULL; slice->next = object->head; object->head->pre = slice; object->head = slice; }
ptr
指針得到 slice
對象,並將佔用標記 lock
置爲 0。若是該節點爲頭節點,則直接返回。若是不是頭節點,則將該節點移動到鏈表頭部。FixedPool
內存池的銷燬static void swFixedPool_destroy(swMemoryPool *pool) { swFixedPool *object = pool->object; if (object->shared) { sw_shm_free(object); } else { sw_free(object); } }