JavaShuo
欄目
標籤
《Blood Vessel Segmentation in Fundus Images Based on Improved Loss Function》
時間 2021-07-12
欄目
圖片處理
简体版
原文
原文鏈接
一、採用U-Net網絡結構 三大優點:支持小數量的數據訓練模型;通過每個像素的分類得到更高的分割精度;訓練模型更快。 二、對比損失函數 A.Binary Cross Entropy(BCE) 當正樣本數遠小於負樣本數時(血管的像素數遠小於背景像素數,約爲1:9),模型很難分割出血管。 B.Dice Loss Dice similarity coeffcient(DSC)表示兩個輪廓區域的相似程度。
>>阅读原文<<
相關文章
1.
[Style Transfer]——Blood Vessel Geometry Synthesis using Generative Adversarial Networks
2.
【醫學+深度論文:F05】2018 automatic optic disk and cup segmentation of fundus images using deep learning
3.
Anchor Loss: Modulating Loss Scale based on Prediction Difficulty
4.
Research on Pedestrian Attribute Recognition Based on Semantic Segmentation in Natural Scene
5.
【語義分割綜述】A Survey On Deep Learning-based Architectures For Semantic Segmentation On 2D Images
6.
Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function 閱讀筆記
7.
Transferred Deep Learning-Based Change Detection in Remote Sensing Images
8.
《Dense Residual Network for Retinal Vessel Segmentation》
9.
【醫學影像系列:二】2019 綜述閱讀 Going Deep in Medical Image Analysis:Concepts, Methods, Challenges and Future
10.
Cross entropy loss function in DNN RNN
更多相關文章...
•
Docker images 命令
-
Docker命令大全
•
SQL MIN() Function
-
SQL 教程
•
Docker 清理命令
•
Java 8 Stream 教程
相關標籤/搜索
based
segmentation
blood
improved
function
loss
images
javascript...function
icon&images
join..on
圖片處理
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
shell編譯問題
2.
mipsel 編譯問題
3.
添加xml
4.
直方圖均衡化
5.
FL Studio鋼琴卷軸之畫筆工具
6.
中小企業爲什麼要用CRM系統
7.
Github | MelGAN 超快音頻合成源碼開源
8.
VUE生產環境打包build
9.
RVAS(rare variant association study)知識
10.
不看後悔系列!DTS 控制檯入門一本通(附網盤鏈接)
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
[Style Transfer]——Blood Vessel Geometry Synthesis using Generative Adversarial Networks
2.
【醫學+深度論文:F05】2018 automatic optic disk and cup segmentation of fundus images using deep learning
3.
Anchor Loss: Modulating Loss Scale based on Prediction Difficulty
4.
Research on Pedestrian Attribute Recognition Based on Semantic Segmentation in Natural Scene
5.
【語義分割綜述】A Survey On Deep Learning-based Architectures For Semantic Segmentation On 2D Images
6.
Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function 閱讀筆記
7.
Transferred Deep Learning-Based Change Detection in Remote Sensing Images
8.
《Dense Residual Network for Retinal Vessel Segmentation》
9.
【醫學影像系列:二】2019 綜述閱讀 Going Deep in Medical Image Analysis:Concepts, Methods, Challenges and Future
10.
Cross entropy loss function in DNN RNN
>>更多相關文章<<