JavaShuo
欄目
標籤
Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
時間 2021-01-06
標籤
聯邦學習
欄目
無線
简体版
原文
原文鏈接
Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge 摘要 我們設想了一個用於機器學習(ML)技術的移動邊緣計算(MEC)框架,它利用分佈式客戶端數據和計算資源來訓練高性能ML模型,同時保留客戶端隱私。爲了實現這一未來目標,本文旨在擴展聯邦學習(FL)這個分散學習框架,使模型的隱私保護
>>阅读原文<<
相關文章
1.
論文筆記——Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
2.
Federated Learning in Mobile Edge Networks: AComprehensive Survey(翻譯)
3.
Differentially Private Asynchronous Federated Learning for Mobile Edge Computing in Urban Informatic
4.
論文筆記Client-Edge-Cloud Hierarchical Federated Learning
5.
論文筆記——Federated learning framework for mobile edge computing networks
6.
Incentive Design for Efficient Federated Learning in Mobile Networks: A Contract Theory Approach
7.
【譯】Federated Learning: Bringing Machine Learning to the edge with Kotlin and Android
8.
31 Game-Based Learning Resources for Educators
9.
DeepDecision: A Mobile Deep Learning Framework for Edge Video Analytics
10.
Energy-efficient Offloading for Mobile Edge Computing in 5G Heterogeneous Networks----邊緣計算譯文part I
更多相關文章...
•
Swift for-in 循環
-
Swift 教程
•
Lua for 循環
-
Lua 教程
•
Java Agent入門實戰(一)-Instrumentation介紹與使用
•
爲了進字節跳動,我精選了29道Java經典算法題,帶詳細講解
相關標籤/搜索
for...in
for..in
for.....in
selection
heterogeneous
federated
resources
edge
learning
mobile
無線
jQuery Mobile 教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
Appium入門
2.
Spring WebFlux 源碼分析(2)-Netty 服務器啓動服務流程 --TBD
3.
wxpython入門第六步(高級組件)
4.
CentOS7.5安裝SVN和可視化管理工具iF.SVNAdmin
5.
jedis 3.0.1中JedisPoolConfig對象缺少setMaxIdle、setMaxWaitMillis等方法,問題記錄
6.
一步一圖一代碼,一定要讓你真正徹底明白紅黑樹
7.
2018-04-12—(重點)源碼角度分析Handler運行原理
8.
Spring AOP源碼詳細解析
9.
Spring Cloud(1)
10.
python簡單爬去油價信息發送到公衆號
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
論文筆記——Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
2.
Federated Learning in Mobile Edge Networks: AComprehensive Survey(翻譯)
3.
Differentially Private Asynchronous Federated Learning for Mobile Edge Computing in Urban Informatic
4.
論文筆記Client-Edge-Cloud Hierarchical Federated Learning
5.
論文筆記——Federated learning framework for mobile edge computing networks
6.
Incentive Design for Efficient Federated Learning in Mobile Networks: A Contract Theory Approach
7.
【譯】Federated Learning: Bringing Machine Learning to the edge with Kotlin and Android
8.
31 Game-Based Learning Resources for Educators
9.
DeepDecision: A Mobile Deep Learning Framework for Edge Video Analytics
10.
Energy-efficient Offloading for Mobile Edge Computing in 5G Heterogeneous Networks----邊緣計算譯文part I
>>更多相關文章<<