JavaShuo
欄目
標籤
Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
時間 2021-01-06
標籤
聯邦學習
欄目
無線
简体版
原文
原文鏈接
Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge 摘要 我們設想了一個用於機器學習(ML)技術的移動邊緣計算(MEC)框架,它利用分佈式客戶端數據和計算資源來訓練高性能ML模型,同時保留客戶端隱私。爲了實現這一未來目標,本文旨在擴展聯邦學習(FL)這個分散學習框架,使模型的隱私保護
>>阅读原文<<
相關文章
1.
論文筆記——Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
2.
Federated Learning in Mobile Edge Networks: AComprehensive Survey(翻譯)
3.
Differentially Private Asynchronous Federated Learning for Mobile Edge Computing in Urban Informatic
4.
論文筆記Client-Edge-Cloud Hierarchical Federated Learning
5.
論文筆記——Federated learning framework for mobile edge computing networks
6.
Incentive Design for Efficient Federated Learning in Mobile Networks: A Contract Theory Approach
7.
【譯】Federated Learning: Bringing Machine Learning to the edge with Kotlin and Android
8.
31 Game-Based Learning Resources for Educators
9.
DeepDecision: A Mobile Deep Learning Framework for Edge Video Analytics
10.
Energy-efficient Offloading for Mobile Edge Computing in 5G Heterogeneous Networks----邊緣計算譯文part I
更多相關文章...
•
Swift for-in 循環
-
Swift 教程
•
Lua for 循環
-
Lua 教程
•
Java Agent入門實戰(一)-Instrumentation介紹與使用
•
爲了進字節跳動,我精選了29道Java經典算法題,帶詳細講解
相關標籤/搜索
for...in
for..in
for.....in
selection
heterogeneous
federated
resources
edge
learning
mobile
無線
jQuery Mobile 教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
融合阿里雲,牛客助您找到心儀好工作
2.
解決jdbc(jdbctemplate)在測試類時不報錯在TomCatb部署後報錯
3.
解決PyCharm GoLand IntelliJ 等 JetBrains 系列 IDE無法輸入中文
4.
vue+ant design中關於圖片請求不顯示的問題。
5.
insufficient memory && Native memory allocation (malloc) failed
6.
解決IDEA用Maven創建的Web工程不能創建Java Class文件的問題
7.
[已解決] Error: Cannot download ‘https://start.spring.io/starter.zip?
8.
在idea讓java文件夾正常使用
9.
Eclipse啓動提示「subversive connector discovery」
10.
帥某-技巧-快速轉帖博主文章(article_content)
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
論文筆記——Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
2.
Federated Learning in Mobile Edge Networks: AComprehensive Survey(翻譯)
3.
Differentially Private Asynchronous Federated Learning for Mobile Edge Computing in Urban Informatic
4.
論文筆記Client-Edge-Cloud Hierarchical Federated Learning
5.
論文筆記——Federated learning framework for mobile edge computing networks
6.
Incentive Design for Efficient Federated Learning in Mobile Networks: A Contract Theory Approach
7.
【譯】Federated Learning: Bringing Machine Learning to the edge with Kotlin and Android
8.
31 Game-Based Learning Resources for Educators
9.
DeepDecision: A Mobile Deep Learning Framework for Edge Video Analytics
10.
Energy-efficient Offloading for Mobile Edge Computing in 5G Heterogeneous Networks----邊緣計算譯文part I
>>更多相關文章<<