JavaShuo
欄目
標籤
Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
時間 2021-01-06
標籤
聯邦學習
欄目
無線
简体版
原文
原文鏈接
Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge 摘要 我們設想了一個用於機器學習(ML)技術的移動邊緣計算(MEC)框架,它利用分佈式客戶端數據和計算資源來訓練高性能ML模型,同時保留客戶端隱私。爲了實現這一未來目標,本文旨在擴展聯邦學習(FL)這個分散學習框架,使模型的隱私保護
>>阅读原文<<
相關文章
1.
論文筆記——Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
2.
Federated Learning in Mobile Edge Networks: AComprehensive Survey(翻譯)
3.
Differentially Private Asynchronous Federated Learning for Mobile Edge Computing in Urban Informatic
4.
論文筆記Client-Edge-Cloud Hierarchical Federated Learning
5.
論文筆記——Federated learning framework for mobile edge computing networks
6.
Incentive Design for Efficient Federated Learning in Mobile Networks: A Contract Theory Approach
7.
【譯】Federated Learning: Bringing Machine Learning to the edge with Kotlin and Android
8.
31 Game-Based Learning Resources for Educators
9.
DeepDecision: A Mobile Deep Learning Framework for Edge Video Analytics
10.
Energy-efficient Offloading for Mobile Edge Computing in 5G Heterogeneous Networks----邊緣計算譯文part I
更多相關文章...
•
Swift for-in 循環
-
Swift 教程
•
Lua for 循環
-
Lua 教程
•
Java Agent入門實戰(一)-Instrumentation介紹與使用
•
爲了進字節跳動,我精選了29道Java經典算法題,帶詳細講解
相關標籤/搜索
for...in
for..in
for.....in
selection
heterogeneous
federated
resources
edge
learning
mobile
無線
jQuery Mobile 教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
網絡層協議以及Ping
2.
ping檢測
3.
爲開發者總結了Android ADB 的常用十種命令
4.
3·15 CDN維權——看懂第三方性能測試指標
5.
基於 Dawn 進行多工程管理
6.
缺陷的分類
7.
阿里P8內部絕密分享:運維真經K8S+Docker指南」,越啃越香啊,寶貝
8.
本地iis部署mvc項目,問題與總結
9.
InterService+粘性服務+音樂播放器
10.
把tomcat服務器配置爲windows服務的方法
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
論文筆記——Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
2.
Federated Learning in Mobile Edge Networks: AComprehensive Survey(翻譯)
3.
Differentially Private Asynchronous Federated Learning for Mobile Edge Computing in Urban Informatic
4.
論文筆記Client-Edge-Cloud Hierarchical Federated Learning
5.
論文筆記——Federated learning framework for mobile edge computing networks
6.
Incentive Design for Efficient Federated Learning in Mobile Networks: A Contract Theory Approach
7.
【譯】Federated Learning: Bringing Machine Learning to the edge with Kotlin and Android
8.
31 Game-Based Learning Resources for Educators
9.
DeepDecision: A Mobile Deep Learning Framework for Edge Video Analytics
10.
Energy-efficient Offloading for Mobile Edge Computing in 5G Heterogeneous Networks----邊緣計算譯文part I
>>更多相關文章<<