JavaShuo
欄目
標籤
論文筆記——Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
時間 2020-12-26
欄目
無線
简体版
原文
原文鏈接
論文筆記——Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge 本文提出了一種基於邊緣計算的協議來改進聯邦學習算法。 由服務器和基站(BS)組成的位於無線網絡中的特定MEC平臺管理服務器和客戶端的行爲。 通過MEC operator 對客戶端進行選擇。 首先,隨機選取一定佔比的客戶端
>>阅读原文<<
相關文章
1.
論文筆記——Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
2.
Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
3.
論文筆記Client-Edge-Cloud Hierarchical Federated Learning
4.
論文筆記——Federated learning framework for mobile edge computing networks
5.
Federated Learning in Mobile Edge Networks: AComprehensive Survey(翻譯)
6.
Differentially Private Asynchronous Federated Learning for Mobile Edge Computing in Urban Informatic
7.
Federated Learning with Non-IID Data 論文筆記
8.
論文筆記——Fair Resource Allocation in Federated Learning
9.
Secure Federated Transfer Learning(論文筆記)
10.
論文:Learning Matching Models with Weak Supervision for Response Selection in Retrieval-based Chatbots
更多相關文章...
•
Swift for-in 循環
-
Swift 教程
•
ASP.NET Razor - 標記
-
ASP.NET 教程
•
Tomcat學習筆記(史上最全tomcat學習筆記)
•
Scala 中文亂碼解決
相關標籤/搜索
論文筆記
for...in
for..in
for.....in
selection
heterogeneous
federated
resources
edge
learning
無線
jQuery Mobile 教程
MyBatis教程
PHP教程
文件系統
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
安裝cuda+cuDNN
2.
GitHub的使用說明
3.
phpDocumentor使用教程【安裝PHPDocumentor】
4.
yarn run build報錯Component is not found in path 「npm/taro-ui/dist/weapp/components/rate/index「
5.
精講Haproxy搭建Web集羣
6.
安全測試基礎之MySQL
7.
C/C++編程筆記:C語言中的複雜聲明分析,用實例帶你完全讀懂
8.
Python3教程(1)----搭建Python環境
9.
李宏毅機器學習課程筆記2:Classification、Logistic Regression、Brief Introduction of Deep Learning
10.
阿里雲ECS配置速記
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
論文筆記——Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
2.
Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
3.
論文筆記Client-Edge-Cloud Hierarchical Federated Learning
4.
論文筆記——Federated learning framework for mobile edge computing networks
5.
Federated Learning in Mobile Edge Networks: AComprehensive Survey(翻譯)
6.
Differentially Private Asynchronous Federated Learning for Mobile Edge Computing in Urban Informatic
7.
Federated Learning with Non-IID Data 論文筆記
8.
論文筆記——Fair Resource Allocation in Federated Learning
9.
Secure Federated Transfer Learning(論文筆記)
10.
論文:Learning Matching Models with Weak Supervision for Response Selection in Retrieval-based Chatbots
>>更多相關文章<<