JavaShuo
欄目
標籤
論文筆記——Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
時間 2020-12-26
欄目
無線
简体版
原文
原文鏈接
論文筆記——Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge 本文提出了一種基於邊緣計算的協議來改進聯邦學習算法。 由服務器和基站(BS)組成的位於無線網絡中的特定MEC平臺管理服務器和客戶端的行爲。 通過MEC operator 對客戶端進行選擇。 首先,隨機選取一定佔比的客戶端
>>阅读原文<<
相關文章
1.
論文筆記——Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
2.
Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
3.
論文筆記Client-Edge-Cloud Hierarchical Federated Learning
4.
論文筆記——Federated learning framework for mobile edge computing networks
5.
Federated Learning in Mobile Edge Networks: AComprehensive Survey(翻譯)
6.
Differentially Private Asynchronous Federated Learning for Mobile Edge Computing in Urban Informatic
7.
Federated Learning with Non-IID Data 論文筆記
8.
論文筆記——Fair Resource Allocation in Federated Learning
9.
Secure Federated Transfer Learning(論文筆記)
10.
論文:Learning Matching Models with Weak Supervision for Response Selection in Retrieval-based Chatbots
更多相關文章...
•
Swift for-in 循環
-
Swift 教程
•
ASP.NET Razor - 標記
-
ASP.NET 教程
•
Tomcat學習筆記(史上最全tomcat學習筆記)
•
Scala 中文亂碼解決
相關標籤/搜索
論文筆記
for...in
for..in
for.....in
selection
heterogeneous
federated
resources
edge
learning
無線
jQuery Mobile 教程
MyBatis教程
PHP教程
文件系統
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
gitlab新建分支後,android studio拿不到
2.
Android Wi-Fi 連接/斷開時間
3.
今日頭條面試題+答案,花點時間看看!
4.
小程序時間組件的開發
5.
小程序學習系列一
6.
[微信小程序] 微信小程序學習(一)——起步
7.
硬件
8.
C3盒模型以及他出現的必要性和圓角邊框/前端三
9.
DELL戴爾筆記本關閉觸摸板觸控板WIN10
10.
Java的long和double類型的賦值操作爲什麼不是原子性的?
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
論文筆記——Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
2.
Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
3.
論文筆記Client-Edge-Cloud Hierarchical Federated Learning
4.
論文筆記——Federated learning framework for mobile edge computing networks
5.
Federated Learning in Mobile Edge Networks: AComprehensive Survey(翻譯)
6.
Differentially Private Asynchronous Federated Learning for Mobile Edge Computing in Urban Informatic
7.
Federated Learning with Non-IID Data 論文筆記
8.
論文筆記——Fair Resource Allocation in Federated Learning
9.
Secure Federated Transfer Learning(論文筆記)
10.
論文:Learning Matching Models with Weak Supervision for Response Selection in Retrieval-based Chatbots
>>更多相關文章<<